Skip to content

Latest commit

 

History

History
101 lines (86 loc) · 5.42 KB

README.md

File metadata and controls

101 lines (86 loc) · 5.42 KB

DUB: Discrete Unit Back-translation for Speech Translation

This is a pytorch implementation of DUB: Discrete Unit Back-translation for Speech Translation (ACL 2023 Findings).

Overview

Can speech be unsupervisedly discretized? Is it better to represent speech with discrete units than with continuous features in direct ST? How much benefit can useful MT techniques bring to ST? Discrete Unit Back-translation (DUB) migrates the useful back-translation and pre-training technique from machine translation to speech translation by discretizing the speech signals into unit sequences. Experimental results show that DUB can further yield an average 5.5 BLEU gain on the MuST-C English-to-German, French, and Spanish translation directions. Experimental results on CoVoST-2 dataset shows that DUB is particularly beneficial for low-resource or unwritten languages in the world.

Download Trained Models

You can download all the models at 🤗huggingface model.

Datasets Model SPM & Vocab
En-De U2TT
T2UT
U2TT_DUB
Bimodal BART
SPM model
Vocab
En-Es U2TT
T2UT
U2TT_DUB
SPM model
Vocab
En-Fr U2TT
T2UT
U2TT_DUB
SPM model
Vocab

Running DUB on MuST-C En-De

Installation

git clone git@github.com:0nutation/DUB.git
cd DUB
pip3 install -r requirements.txt
pip3 install --editable ./

Data preparation

  1. Environment setup
export ROOT="DUB"
export LANGUAGE="de"
export MUSTC_ROOT="${ROOT}/data-bin/MuSTC"
  1. Download the MuST-C v1.0 archive MUSTC_v1.0_en-de.tar.gz and uncompress it:
mkdir -p ${MUSTC_ROOT}
cd $MUSTC_ROOT
tar -xzvf MUSTC_v1.0_en-${LANGUAGE}.tar.gz
  1. Prepare units and text for training
bash ${ROOT}/src/prepare_data.sh ${LANGUAGE}

Training

Train U2TT

Train unit-to-text translation(U2TT) forward-translation model.

bash entry.sh --task translate --src_lang en_units --tgt_lang ${LANGUAGE}

Train T2UT

Train text-to-unit translation(T2UT) back-translation model.

bash entry.sh --task translate --src_lang ${LANGUAGE} --tgt_lang en_units

Back-translate

Generate pseudo pair data using pretrained T2UT model.

BT_STRATEGY="topk10"  #["beam5", "topk10", "topk300"]
bash ${ROOT}/src/back_translate.sh --real_lang ${LANGUAGE} --sys_lang en_units --ckpt_name checkpoint_best.pt --bt_strategy ${BT_STRATEGY}

Train U2TT on mix dataset

Train U2TT on mixture of real and pseudo pair data.

bash ${ROOT}/src/back_translate.sh --task translate --src_lang en_units --tgt_lang ${LANGUAGE} --bt_strategy ${BT_STRATEGY}

Train bimodal BART

Train bimodal BART. Before pre-training bimodal BART, you need to generate GigaSpeech units and save it to ${ROOT}/data-bin/RawDATA/bimodalBART/en_units-${LANGUAGE}/train.unit

bash entry.sh --task bimodalBART --src_lang en_units --tgt_lang ${LANGUAGE}

Trian U2TT from bimodal BART

Train U2TT with bimodal BART as pretrained model.

bash entry.sh --task translate --src_lang en_units --tgt_lang ${LANGUAGE} --bimodalBARTinit True

Evaluation

export CKPT_PATH="path to your checkpoint"
bash ${ROOT}/src/evaluate.sh ${LANGUAGE} ${CKPT_PATH}

Citation

If you find DUB useful for your research and applications, please cite using the BibTex:

@inproceedings{zhang2023dub,
	title = {DUB: Discrete Unit Back-translation for Speech Translation},
	author = {Dong Zhang and Rong Ye and Tom Ko and Mingxuan Wang and Yaqian Zhou},
	booktitle = {Findings of ACL},
	year = {2023},
}