-
Notifications
You must be signed in to change notification settings - Fork 10
/
Feature_Matching.py
86 lines (70 loc) · 3.09 KB
/
Feature_Matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
from torch.autograd import Variable
import torch.nn as nn
from torchvision import models
import torchvision.transforms as transforms
import torchvision.datasets as dset
class Vgg19(torch.nn.Module):
def __init__(self, requires_grad=False):
super(Vgg19, self).__init__()
vgg_pretrained_features = models.vgg19(pretrained=True).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
class VGGLoss(nn.Module):
def __init__(self, gpu_ids=0):
super(VGGLoss, self).__init__()
self.vgg = Vgg19()
self.criterion = nn.L1Loss()
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0]
def forward(self, x, y):
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
loss = 0
for i in range(len(x_vgg)):
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
return loss
#------------------Example------------------------------------
if __name__ == '__main__':
dataset = dset.MNIST(root='C:/Users/motur/LRGAN/datasets/mnist', download=False,
transform=transforms.Compose([
transforms.Resize(128),
transforms.ToTensor(),
]))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4,
shuffle=True)
data_iter = iter(dataloader)
criterionVGG = VGGLoss()
criterionVGG = criterionVGG.cuda()
for i in range(20):
images, labels = data_iter.next()
img1 = Variable(images[0].expand(1,3,128,128).cuda())
img2 = Variable(images[1].expand(1,3,128,128).cuda())
y1 = labels[0]
y2 = labels[1]
loss_G_VGG = criterionVGG(img1, img2)
print(str(y1) + ' , ' + str(y2))
print(loss_G_VGG.data)
break