-
Notifications
You must be signed in to change notification settings - Fork 43
/
infinite_isp.py
442 lines (373 loc) · 16.2 KB
/
infinite_isp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
"""
File: isp_pipeline.py
Description: Executes the complete pipeline
Code / Paper Reference:
Author: 10xEngineers Pvt Ltd
------------------------------------------------------------
"""
import time
from pathlib import Path
import numpy as np
import yaml
import rawpy
import util.utils as util
from modules.crop.crop import Crop
from modules.dead_pixel_correction.dead_pixel_correction import (
DeadPixelCorrection as DPC,
)
from modules.black_level_correction.black_level_correction import (
BlackLevelCorrection as BLC,
)
from modules.oecf.oecf import OECF
from modules.digital_gain.digital_gain import DigitalGain as DG
from modules.lens_shading_correction.lens_shading_correction import (
LensShadingCorrection as LSC,
)
from modules.bayer_noise_reduction.bayer_noise_reduction import (
BayerNoiseReduction as BNR,
)
from modules.auto_white_balance.auto_white_balance import AutoWhiteBalance as AWB
from modules.white_balance.white_balance import WhiteBalance as WB
from modules.demosaic.demosaic import Demosaic
from modules.color_correction_matrix.color_correction_matrix import (
ColorCorrectionMatrix as CCM,
)
from modules.gamma_correction.gamma_correction import GammaCorrection as GC
from modules.auto_exposure.auto_exposure import AutoExposure as AE
from modules.color_space_conversion.color_space_conversion import (
ColorSpaceConversion as CSC,
)
from modules.ldci.ldci import LDCI
from modules.sharpen.sharpen import Sharpening as SHARP
from modules.noise_reduction_2d.noise_reduction_2d import NoiseReduction2d as NR2D
from modules.rgb_conversion.rgb_conversion import RGBConversion as RGBC
from modules.scale.scale import Scale
from modules.yuv_conv_format.yuv_conv_format import YUVConvFormat as YUV_C
class InfiniteISP:
"""
Infinite-ISP Pipeline
"""
def __init__(self, data_path, config_path):
"""
Constructor: Initialize with config and raw file path
and Load configuration parameter from yaml file
"""
self.data_path = data_path
self.load_config(config_path)
def load_config(self, config_path):
"""
Load config information to respective module parameters
"""
self.config_path = config_path
with open(config_path, "r", encoding="utf-8") as file:
c_yaml = yaml.safe_load(file)
# Extract workspace info
self.platform = c_yaml["platform"]
self.raw_file = self.platform["filename"]
self.render_3a = self.platform["render_3a"]
# Extract basic sensor info
self.sensor_info = c_yaml["sensor_info"]
# Get isp module params
self.parm_dpc = c_yaml["dead_pixel_correction"]
self.parm_dga = c_yaml["digital_gain"]
self.parm_lsc = c_yaml["lens_shading_correction"]
self.parm_bnr = c_yaml["bayer_noise_reduction"]
self.parm_blc = c_yaml["black_level_correction"]
self.parm_oec = c_yaml["oecf"]
self.parm_wbc = c_yaml["white_balance"]
self.parm_awb = c_yaml["auto_white_balance"]
self.parm_dem = c_yaml["demosaic"]
self.parm_ae = c_yaml["auto_exposure"]
self.parm_ccm = c_yaml["color_correction_matrix"]
self.parm_gmc = c_yaml["gamma_correction"]
self.parm_csc = c_yaml["color_space_conversion"]
self.parm_cse = c_yaml["color_saturation_enhancement"]
self.parm_ldci = c_yaml["ldci"]
self.parm_sha = c_yaml["sharpen"]
self.parm_2dn = c_yaml["2d_noise_reduction"]
self.parm_rgb = c_yaml["rgb_conversion"]
self.parm_sca = c_yaml["scale"]
self.parm_cro = c_yaml["crop"]
self.parm_yuv = c_yaml["yuv_conversion_format"]
self.c_yaml = c_yaml
self.platform["rgb_output"] = self.parm_rgb["is_enable"]
# add rgb_output_conversion module
def load_raw(self):
"""
Load raw image from provided path
"""
# Load raw image file information
path_object = Path(self.data_path, self.raw_file)
raw_path = str(path_object.resolve())
self.in_file = path_object.stem
self.out_file = "Out_" + self.in_file
self.platform["in_file"] = self.in_file
self.platform["out_file"] = self.out_file
width = self.sensor_info["width"]
height = self.sensor_info["height"]
bit_depth = self.sensor_info["bit_depth"]
# Load Raw
if path_object.suffix == ".raw":
if bit_depth > 8:
self.raw = np.fromfile(raw_path, dtype=np.uint16).reshape(
(height, width)
)
else:
self.raw = (
np.fromfile(raw_path, dtype=np.uint8)
.reshape((height, width))
.astype(np.uint16)
)
else:
img = rawpy.imread(raw_path)
self.raw = img.raw_image
def run_pipeline(self, visualize_output=True):
"""
Simulation of ISP-Pipeline
"""
# =====================================================================
# Cropping
crop = Crop(self.raw, self.platform, self.sensor_info, self.parm_cro)
cropped_img = crop.execute()
# =====================================================================
# Dead pixels correction
dpc = DPC(cropped_img, self.sensor_info, self.parm_dpc, self.platform)
dpc_raw = dpc.execute()
# =====================================================================
# Black level correction
blc = BLC(dpc_raw, self.platform, self.sensor_info, self.parm_blc)
blc_raw = blc.execute()
# =====================================================================
# OECF
oecf = OECF(blc_raw, self.platform, self.sensor_info, self.parm_oec)
oecf_raw = oecf.execute()
# =====================================================================
# Digital Gain
dga = DG(oecf_raw, self.platform, self.sensor_info, self.parm_dga)
dga_raw, self.dga_current_gain = dga.execute()
# =====================================================================
# Lens shading correction
lsc = LSC(dga_raw, self.platform, self.sensor_info, self.parm_lsc)
lsc_raw = lsc.execute()
# =====================================================================
# Bayer noise reduction
bnr = BNR(lsc_raw, self.sensor_info, self.parm_bnr, self.platform)
bnr_raw = bnr.execute()
# =====================================================================
# Auto White Balance
awb = AWB(bnr_raw, self.sensor_info, self.parm_awb)
self.awb_gains = awb.execute()
# =====================================================================
# White balancing
wbc = WB(bnr_raw, self.platform, self.sensor_info, self.parm_wbc)
wb_raw = wbc.execute()
# =====================================================================
# CFA demosaicing
cfa_inter = Demosaic(wb_raw, self.platform, self.sensor_info, self.parm_dem)
demos_img = cfa_inter.execute()
# =====================================================================
# Color correction matrix
ccm = CCM(demos_img, self.platform, self.sensor_info, self.parm_ccm)
ccm_img = ccm.execute()
# =====================================================================
# Gamma
gmc = GC(ccm_img, self.platform, self.sensor_info, self.parm_gmc)
gamma_raw = gmc.execute()
# =====================================================================
# Auto-Exposure
aef = AE(gamma_raw, self.sensor_info, self.parm_ae)
self.ae_feedback = aef.execute()
# =====================================================================
# Color space conversion
csc = CSC(gamma_raw, self.platform, self.sensor_info, self.parm_csc, self.parm_cse )
csc_img = csc.execute()
# =====================================================================
# Local Dynamic Contrast Improvement
ldci = LDCI(
csc_img,
self.platform,
self.sensor_info,
self.parm_ldci,
self.parm_csc["conv_standard"],
)
ldci_img = ldci.execute()
# =====================================================================
# Sharpening
sharp = SHARP(
ldci_img,
self.platform,
self.sensor_info,
self.parm_sha,
self.parm_csc["conv_standard"],
)
sharp_img = sharp.execute()
# =====================================================================
# 2d noise reduction
nr2d = NR2D(
sharp_img,
self.sensor_info,
self.parm_2dn,
self.platform,
self.parm_csc["conv_standard"],
)
nr2d_img = nr2d.execute()
# =====================================================================
# RGB conversion
rgbc = RGBC(
nr2d_img, self.platform, self.sensor_info, self.parm_rgb, self.parm_csc
)
rgbc_img = rgbc.execute()
# =====================================================================
# Scaling
scale = Scale(
rgbc_img,
self.platform,
self.sensor_info,
self.parm_sca,
self.parm_csc["conv_standard"],
)
scaled_img = scale.execute()
# =====================================================================
# YUV saving format 444, 422 etc
yuv = YUV_C(scaled_img, self.platform, self.sensor_info, self.parm_yuv)
yuv_conv = yuv.execute()
# only to view image if csc is off it does nothing
out_img = yuv_conv
out_dim = scaled_img.shape # dimensions of Output Image
# Is not part of ISP-pipeline only assists in visualizing output results
if visualize_output:
# There can be two out_img formats depending upon which modules are
# enabled 1. YUV 2. RGB
if self.parm_yuv["is_enable"] is True:
# YUV_C is enabled and RGB_C is disabled: Output is compressed YUV
# To display : Need to decompress it and convert it to RGB.
image_height, image_width, _ = out_dim
yuv_custom_format = self.parm_yuv["conv_type"]
yuv_conv = util.get_image_from_yuv_format_conversion(
yuv_conv, image_height, image_width, yuv_custom_format
)
rgbc.yuv_img = yuv_conv
out_rgb = rgbc.yuv_to_rgb()
elif self.parm_rgb["is_enable"] is False:
# RGB_C is disabled: Output is 3D - YUV
# To display : Only convert it to RGB
rgbc.yuv_img = yuv_conv
out_rgb = rgbc.yuv_to_rgb()
else:
# RGB_C is enabled: Output is RGB
# no further processing is needed for display
out_rgb = out_img
# If both RGB_C and YUV_C are enabled. Infinite-ISP will generate
# an output but it will be an invalid image.
util.save_pipeline_output(self.out_file, out_rgb, self.c_yaml)
def execute(self, img_path=None):
"""
Start execution of Infinite-ISP
"""
if img_path is not None:
self.raw_file = img_path
self.c_yaml["platform"]["filename"] = self.raw_file
self.load_raw()
# Print Logs to mark start of pipeline Execution
print(50 * "-" + "\nLoading RAW Image Done......\n")
print("Filename: ", self.in_file)
# Note Initial Time for Pipeline Execution
start = time.time()
if not self.render_3a:
# Run ISP-Pipeline once
self.run_pipeline(visualize_output=True)
# Display 3A Statistics
else:
# Run ISP-Pipeline till Correct Exposure with AWB gains
self.execute_with_3a_statistics()
util.display_ae_statistics(self.ae_feedback, self.awb_gains)
# Print Logs to mark end of pipeline Execution
print(50 * "-" + "\n")
# Calculate pipeline execution time
print(f"\nPipeline Elapsed Time: {time.time() - start:.3f}s")
def load_3a_statistics(self, awb_on=True, ae_on=True):
"""
Update 3A Stats into WB and DG modules parameters
"""
# Update 3A in c_yaml too because it is output config
if awb_on is True and self.parm_dga["is_auto"] and self.parm_awb["is_enable"]:
self.parm_wbc["r_gain"] = self.c_yaml["white_balance"]["r_gain"] = float(
self.awb_gains[0]
)
self.parm_wbc["b_gain"] = self.c_yaml["white_balance"]["b_gain"] = float(
self.awb_gains[1]
)
if ae_on is True and self.parm_dga["is_auto"] and self.parm_ae["is_enable"]:
self.parm_dga["ae_feedback"] = self.c_yaml["digital_gain"][
"ae_feedback"
] = self.ae_feedback
self.parm_dga["current_gain"] = self.c_yaml["digital_gain"][
"current_gain"
] = self.dga_current_gain
def execute_with_3a_statistics(self):
"""
Execute Infinite-ISP with AWB gains and correct exposure
"""
# Maximum Iterations depend on total permissible gains
max_dg = len(self.parm_dga["gain_array"])
# Run ISP-Pipeline
self.run_pipeline(visualize_output=False)
self.load_3a_statistics()
while not (
(self.ae_feedback == 0)
or (self.ae_feedback == -1 and self.dga_current_gain == max_dg)
or (self.ae_feedback == 1 and self.dga_current_gain == 0)
or self.ae_feedback is None
):
self.run_pipeline(visualize_output=False)
self.load_3a_statistics()
self.run_pipeline(visualize_output=True)
def update_sensor_info(self, sensor_info, update_blc_wb=False):
"""
Update sensor_info in config files
"""
self.sensor_info["width"] = self.c_yaml["sensor_info"]["width"] = sensor_info[0]
self.sensor_info["height"] = self.c_yaml["sensor_info"]["height"] = sensor_info[
1
]
self.sensor_info["bit_depth"] = self.c_yaml["sensor_info"][
"bit_depth"
] = sensor_info[2]
self.sensor_info["bayer_pattern"] = self.c_yaml["sensor_info"][
"bayer_pattern"
] = sensor_info[3]
if update_blc_wb:
self.parm_blc["r_offset"] = self.c_yaml["black_level_correction"][
"r_offset"
] = sensor_info[4][0]
self.parm_blc["gr_offset"] = self.c_yaml["black_level_correction"][
"gr_offset"
] = sensor_info[4][1]
self.parm_blc["gb_offset"] = self.c_yaml["black_level_correction"][
"gb_offset"
] = sensor_info[4][2]
self.parm_blc["b_offset"] = self.c_yaml["black_level_correction"][
"b_offset"
] = sensor_info[4][3]
self.parm_blc["r_sat"] = self.c_yaml["black_level_correction"][
"r_sat"
] = sensor_info[5]
self.parm_blc["gr_sat"] = self.c_yaml["black_level_correction"][
"gr_sat"
] = sensor_info[5]
self.parm_blc["gb_sat"] = self.c_yaml["black_level_correction"][
"gb_sat"
] = sensor_info[5]
self.parm_blc["b_sat"] = self.c_yaml["black_level_correction"][
"b_sat"
] = sensor_info[5]
self.parm_wbc["r_gain"] = self.c_yaml["white_balance"][
"r_gain"
] = sensor_info[6][0]
self.parm_wbc["b_gain"] = self.c_yaml["white_balance"][
"b_gain"
] = sensor_info[6][2]
# if sensor_info[7] is not None:
# self.parm_ccm["corrected_red"] = sensor_info[7][0,0:3]
# self.parm_ccm["corrected_green"] = sensor_info[7][1,0:3]
# self.parm_ccm["corrected_blue"] = sensor_info[7][2,0:3]