Skip to content

Latest commit

 

History

History
67 lines (51 loc) · 4.58 KB

README.md

File metadata and controls

67 lines (51 loc) · 4.58 KB

Optimization Basic Algorithm

Introduction:

Save my optimization code demo: convex optimization; numerical optimization algorithm

note: code based on cvxpy package
my notes of optimization:

numerical optimization

convex optimization

Project struct

Linear Search Methods:

Steepest Descent Method
Newton Method
Quasi-Newton Method
Conjugate Gradient Method
Matrix Util Method

Large-Scale Unconstrained Optimization:

Inexact Newton method

Algorithm list

Linear Search Methods :

StepLength:

{ Backtracking Line Search } Algorithm: BacktrackingLineSearch.py
{ Interpolation: Quadratic; Cubic} Algorithm: Interpolation.py
{ Zoom} Algorithm: Zoom.py
{ Wolfe Line Search-low dimension} Algorithm: WolfeLineSearch.py
{ Wolfe Line Search-high dimension} Algorithm: WolfeCondition.py

Steepest Descent:

{ Gradient Descent Method } Algorithm: GradientDescentMethod.py

Newton:

{ Newton Method } Algorithm: NewtonMethod.py
{ Cholesky with Added Multiple of the Identity } Algorithm: AddedMultipleOfTheIdentity.py

Quasi-Newton:

{ DFP Method } Algorithm: DFP.py
{ BFGS Method } Algorithm: BFGS.py

Conjugate Gradient:

{ Conjugate Gradient Preliminary } Algorithm: CG_Preliminary.py
{ Conjugate Gradient } Algorithm: CG.py
{ Preconditioned Conjugate Gradient } Algorithm: Preconditioned_CG.py
{ Fletcher-Reeves methods } Algorithm: FR.py

MatrixUtil:

{ Cholesky Factorization: LDL^T} Algorithm: Cholesky_LDL.py

Large-Scale Unconstrained Optimization:

Inexact Newton method

{ Line Search Newton-CG } Algorithm: LineSearchNewton_CG.py
{ Limit memory-BFGS } Algorithm: L_BFGS.py

Other demo :

using CvxOpt or Cvxpy package demo:

{ CvxOpt Solve LP } Demo: CvxOptSolveLPDemo.py
{ Cvxpy Solve LP } Demo: CvxpySolveLPDemo.py
{ Cvxpy Solve NLP } Demo: CvxpySolveNLPDemo.py

References

Jorge Nocedal and Stephen J.Wright : Numerical optimization Second Edition

Stephen Boyd and Lieven vandenberghe: Convex optimization