This is a pytorch implement mobilenet-centernet framework, which can be easily deployeed on Android(MNN) and IOS(CoreML) mobile devices, end to end.
Purpose: Light detection algorithms that work on mobile devices is widely used, such as face detection. So there is an easy project contains model training and model converter.
** contact me if u have question 2120140200@mail.nankai.edu.cn **
no test time augmentation.
model | input_size | map | map@0.5 | map@0.75 |
---|---|---|---|---|
mbv2_100-centernet_stride8 | 512x512 | 0.224 | 0.383 | 0.228 |
mbv2_100-centernet_stride4 | 512x512 | 0.234 | 0.385 | 0.242 |
-
pytorch
-
tensorpack
-
opencv
-
python 3.6
-
MNNConverter
-
coremltools
-
download mscoco data, then run
python prepare_coco_data.py --mscocodir ./mscoco
-
then, modify in config=mb3_config in train_config.py, then run:
python train.py
and if u want to check the data when training, u could set vis in confifs/mscoco/mbv3_config.py as True
python model_eval/custome_eval.py [--model [TRAINED_MODEL]] [--annFile [cocostyle annFile]]
[--imgDir [the images dir]] [--is_show [show the result]]
python model_eval/custome_eval.py --model model/detector.pb
--annFile ../mscoco/annotations/instances_val2017.json
--imgDir ../mscoco/val2017
ps, no test time augmentation is used.
python visualization/vis.py --model yout.pth --imgDir yourimgdir
u can check th code in visualization to make it runable, it's simple.
I have carefully processed the postprocess, and it can works within the model, so it could be deployed end to end.
4.1 MNN
convert to onnx first
+ 4.1.1 convert model to onnx
`python tools/converter_to_coreml.py --model your.pth`
+ 4.1.2 convert onnx to mnn
'./MNNConvert -f ONNX --modelFile centernet.onnx --MNNModel centernet.mnn --bizCode biz --weightQuantBits 8`
+ 4.1.2 visualization with mnn python wrapper
`python visualization/vis_with_mnn.py --mnn_model centernet.mnn --imgDir 'your image dir'`
4.2 coreml
##some bugs in coremltools now, convert carefully. try to find the answer in coremltools issue
+ 4.2.1 convert
`python tools/converter_to_coreml.py --model your.pth`
+ 4.2.2 visualization with coreml python wrapper
`python visualization/vis_with_coreml.py --coreml_model centernet.mlmodel --imgDir 'your image dir'`