-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
74 lines (62 loc) · 2.81 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch.nn as nn
import logging
logger = logging.getLogger("logger")
def clean_test(helper, epoch, model):
model.eval()
total_loss = 0
correct = 0
dataset_size = 0
data_iterator = helper.test_data
for batch_id, batch in enumerate(data_iterator):
data, targets = helper.get_batch(data_iterator, batch, evaluation=True)
dataset_size += len(data)
output = model(data)
total_loss += nn.functional.cross_entropy(output, targets,
reduction='sum').item()
# get the index of the max log-probability
pred = output.data.max(1)[1]
correct += pred.eq(targets.data.view_as(pred)).cpu().sum().item()
acc = 100.0 * (float(correct) / float(dataset_size)
) if dataset_size != 0 else 0
total_l = total_loss / dataset_size if dataset_size != 0 else 0
acc = round(acc, 4)
total_l = round(total_l, 4)
logger.info('___Test-clean, epoch: {}: loss: {:.4f}, '
'Acc: {}/{} ({:.4f}%)'.format(epoch,
total_l, correct, dataset_size,
acc))
model.train()
return (total_l, acc, correct, dataset_size)
def poison_test(helper, epoch, model):
model.eval()
total_loss = 0.0
correct = 0
dataset_size = 0
poison_data_count = 0
data_iterator = helper.test_data_poison
for batch_id, batch in enumerate(data_iterator):
if helper.params['adv_method'] == 'labelflip': # label -flipping
data, targets, poison_num = helper.get_poison_batch(
batch, adversarial_index=0, evaluation=True)
elif helper.params['adv_method'] == 'backdoor': # backdoor
data, targets, poison_num = helper.get_poison_batch(
batch, adversarial_index=1, evaluation=True)
poison_data_count += poison_num
dataset_size += len(data)
output = model(data)
total_loss += nn.functional.cross_entropy(output, targets,
reduction='sum').item()
# get the index of the max log-probability
pred = output.data.max(1)[1]
correct += pred.eq(targets.data.view_as(pred)).cpu().sum().item()
acc = 100.0 * (float(correct) / float(poison_data_count)
) if poison_data_count != 0 else 0
total_l = total_loss / poison_data_count if poison_data_count != 0 else 0
acc = round(acc, 4)
total_l = round(total_l, 4)
logger.info('___Test-poison , epoch: {}: loss: {:.4f}, '
'Acc: {}/{} ({:.4f}%)'.format(epoch,
total_l, correct, poison_data_count,
acc))
model.train()
return total_l, acc, correct, poison_data_count