- ScanNet++ (98 video clips with 32 frames each): TAE
- NYU-Depth V2: OPW<=0.37
- Bonn RGB-D Dynamic (5 video clips with 110 frames each): AbsRel<=0.075
- NYU-Depth V2: AbsRel<=0.045 [test: new layout]
- NYU-Depth V2 (640×480): AbsRel<=0.058 [currently no longer up to date]
- DA-2K (mostly 1500×2000): Acc (%)>=86
- UnrealStereo4K (3840×2160): AbsRel<=0.04
- Middlebury2021 (1920×1080): SqRel<=0.5
- Appendix 1: Rules for qualifying models for the rankings (to do)
- Appendix 2: Metrics selection for the rankings (to do)
- Appendix 3: List of all research papers from the above rankings
📝 Note: There are no quantitative comparison results of StereoCrafter yet, so this ranking is based on my own perceptual judgement of the qualitative comparison results shown in Figure 7. One output frame (right view) is compared with one input frame (left view) from the video file: 22_dogskateboarder.MOV
RK | Model Links: Venue Repository |
Rank (human perceptual judgment) ↓ StereoCrafter |
---|---|---|
1 | StereoCrafter |
1 |
2-3 | Immersity AI | 2-3 |
2-3 | Owl3D | 2-3 |
4 | Deep3D |
4 |
RK | Model Links: Venue Repository |
TAE ↓ {Input fr.} DAV |
---|---|---|
1 | Depth Any Video |
2.1 {MF} |
2 | DepthCrafter |
2.2 {MF} |
3 | ChronoDepth |
2.3 {MF} |
4 | NVDS |
3.7 {4} |
RK | Model Links: Venue Repository |
OPW ↓ {Input fr.} FD |
OPW ↓ {Input fr.} NVDS+ |
OPW ↓ {Input fr.} NVDS |
---|---|---|---|---|
1 | FutureDepth |
0.303 {4} | - | - |
2 | NVDS+ |
- | 0.339 {4} | - |
3 | NVDS |
0.364 {4} | - | 0.364 {4} |
RK | Model Links: Venue Repository |
AbsRel ↓ {Input fr.} MonST3R |
AbsRel ↓ {Input fr.} DC |
---|---|---|---|
1 | MonST3R |
0.063 {MF} | - |
2 | DepthCrafter |
0.075 {MF} | 0.075 {MF} |
RK | Model | AbsRel ↓ {Input fr.} |
Training dataset |
Official repository |
Practical model |
Vapour- Synth |
---|---|---|---|---|---|---|
1 | ZoeDepth +PFR=128 ENH: |
0.0388 {1} |
ENH: UnrealStereo4K |
ENH: |
- | - |
RK | Model | SqRel ↓ {Input fr.} |
Training dataset |
Official repository |
Practical model |
VapourSynth |
---|---|---|---|---|---|---|
1 | LeReS-GBDMF ENH: |
0.444 {1} |
ENH: HR-WSI |
ENH: |
- | - |