Skip to content

Latest commit

 

History

History
112 lines (87 loc) · 3.07 KB

README.md

File metadata and controls

112 lines (87 loc) · 3.07 KB

real-robots

https://travis-ci.com/AIcrowd/real_robots.svg?branch=master

demo0 demo1 demo1

Robots that learn to interact with the environment autonomously

Installation

pip install -U real_robots

If everything went well, then you should be able to run :

real-robots-demo

and it should (eventually) open up a small window with a little robotic arm doing random stuff.

Usage

import gym
import numpy as np
import time
import real_robots
from real_robots.policy import BasePolicy

class RandomPolicy(BasePolicy):
    def __init__(self, action_space):
        self.action_space = action_space
        self.action = action_space.sample()

    def step(self, observation, reward, done):
        if np.random.rand() < 0.05:
            self.action = self.action_space.sample()
        return self.action

env = gym.make("REALRobot2020-R2J3-v0")
pi = RandomPolicy(env.action_space)
env.render("human")

observation = env.reset()
reward, done = 0, False
for t in range(40):    
    action = pi.step(observation, reward, done)
    observation, reward, done, info = env.step(action)    

Local Evaluation

import gym
import numpy as np
import real_robots
from real_robots.policy import BasePolicy

class RandomPolicy(BasePolicy):
    def __init__(self, action_space):
        self.action_space = action_space
        self.action = action_space.sample()

    def step(self, observation, reward, done):
        if np.random.rand() < 0.05:
            self.action = self.action_space.sample()
        return self.action

result, detailed_scores = real_robots.evaluate(
                RandomPolicy,
                environment='R1',
                action_type='macro_action',
                n_objects=1,
                intrinsic_timesteps=1e3,
                extrinsic_timesteps=1e3,
                extrinsic_trials=3,
                visualize=False,
                goals_dataset_path='goals-REAL2020-s2020-50-1.npy.npz'
            )
# NOTE : You can find goals-REAL2020-s2020-50-1.npy.npz file in the REAL2020 Starter Kit repository
# or you can generate one using the real-robots-generate-goals command.
#
print(result)
# {'score_REAL2020': 0.06529471503519801, 'score_total': 0.06529471503519801}
print(detailed_scores)
# {'REAL2020': [0.00024387094790936833, 0.19553060745741896, 0.00010966670026571288]}

See also our FAQ.

  • Free software: MIT license

Features

The REALRobot environment is a standard gym environment.
It includes a 7DoF kuka arm with a 2DoF gripper, a table with 3 objects on it and a camera looking at the table from the top. For more info on the environment see environment.md.

Authors