-
Notifications
You must be signed in to change notification settings - Fork 4
/
index.html
317 lines (286 loc) · 9.62 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
<script src="http://www.google.com/jsapi" type="text/javascript"></script>
<script type="text/javascript">google.load("jquery", "1.3.2");</script>
<style type="text/css">
body {
font-family: "HelveticaNeue-Light", "Helvetica Neue Light", "Helvetica Neue", Helvetica, Arial, "Lucida Grande", sans-serif;
font-weight:300;
font-size:18px;
margin-left: auto;
margin-right: auto;
width: 1100px;
}
h1 {
font-size:32px;
font-weight:300;
}
.disclaimerbox {
background-color: #eee;
border: 1px solid #eeeeee;
border-radius: 10px ;
-moz-border-radius: 10px ;
-webkit-border-radius: 10px ;
padding: 20px;
}
video.header-vid {
height: 140px;
border: 1px solid black;
border-radius: 10px ;
-moz-border-radius: 10px ;
-webkit-border-radius: 10px ;
}
img.header-img {
height: 140px;
border: 1px solid black;
border-radius: 10px ;
-moz-border-radius: 10px ;
-webkit-border-radius: 10px ;
}
img.rounded {
border: 1px solid #eeeeee;
border-radius: 10px ;
-moz-border-radius: 10px ;
-webkit-border-radius: 10px ;
}
a:link,a:visited
{
color: #1367a7;
text-decoration: none;
}
a:hover {
color: #208799;
}
td.dl-link {
height: 160px;
text-align: center;
font-size: 22px;
}
.layered-paper-big { /* modified from: http://css-tricks.com/snippets/css/layered-paper/ */
box-shadow:
0px 0px 1px 1px rgba(0,0,0,0.35), /* The top layer shadow */
5px 5px 0 0px #fff, /* The second layer */
5px 5px 1px 1px rgba(0,0,0,0.35), /* The second layer shadow */
10px 10px 0 0px #fff, /* The third layer */
10px 10px 1px 1px rgba(0,0,0,0.35), /* The third layer shadow */
15px 15px 0 0px #fff, /* The fourth layer */
15px 15px 1px 1px rgba(0,0,0,0.35), /* The fourth layer shadow */
20px 20px 0 0px #fff, /* The fifth layer */
20px 20px 1px 1px rgba(0,0,0,0.35), /* The fifth layer shadow */
25px 25px 0 0px #fff, /* The fifth layer */
25px 25px 1px 1px rgba(0,0,0,0.35); /* The fifth layer shadow */
margin-left: 10px;
margin-right: 45px;
}
.paper-big { /* modified from: http://css-tricks.com/snippets/css/layered-paper/ */
box-shadow:
0px 0px 1px 1px rgba(0,0,0,0.35); /* The top layer shadow */
margin-left: 10px;
margin-right: 45px;
}
.layered-paper { /* modified from: http://css-tricks.com/snippets/css/layered-paper/ */
box-shadow:
0px 0px 1px 1px rgba(0,0,0,0.35), /* The top layer shadow */
5px 5px 0 0px #fff, /* The second layer */
5px 5px 1px 1px rgba(0,0,0,0.35), /* The second layer shadow */
10px 10px 0 0px #fff, /* The third layer */
10px 10px 1px 1px rgba(0,0,0,0.35); /* The third layer shadow */
margin-top: 5px;
margin-left: 10px;
margin-right: 30px;
margin-bottom: 5px;
}
.vert-cent {
position: relative;
top: 50%;
transform: translateY(-50%);
}
hr
{
border: 0;
height: 1px;
background-image: linear-gradient(to right, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0.75), rgba(0, 0, 0, 0));
}
</style>
<html>
<head>
<title>This is my paper title</title>
<meta property="og:image" content="Path to my teaser.png"/> <!-- Facebook automatically scrapes this. Go to https://developers.facebook.com/tools/debug/ if you update and want to force Facebook to rescrape. -->
<meta property="og:title" content="End-to-End Semi-Supervised Learning for Video Action Detection" />
<meta property="og:description" content="Paper description." />
<!-- Get from Google Analytics -->
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src=""></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-75863369-6');
</script>
</head>
<body>
<br>
<center>
<span style="font-size:36px">Creative and Descriptive Paper Title</span>
<table align=center width=600px>
<table align=center width=600px>
<tr>
<td align=center width=100px>
<center>
<span style="font-size:24px"><a href="https://akash2907.github.io/">Akash Kumar</a></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:24px"><a href="https://www.crcv.ucf.edu/person/rawat/">Yogesh Singh Rawat</a></span>
</center>
</td>
</tr>
</table>
<table align=center width=250px>
<tr>
<td align=center width=120px>
<center>
<span style="font-size:24px"><a href='https://openaccess.thecvf.com/content/CVPR2022/papers/Kumar_End-to-End_Semi-Supervised_Learning_for_Video_Action_Detection_CVPR_2022_paper.pdf'>[Paper]</a></span>
</center>
</td>
<td align=center width=120px>
<center>
<span style="font-size:24px"><a href='https://github.com/AKASH2907/pi-consistency-activity-detection'>[GitHub]</a></span><br>
</center>
</td>
</tr>
</table>
</table>
</center>
<center>
<table align=center width=850px>
<tr>
<td width=260px>
<center>
<img class="round" style="width:500px" src="./asset/framework.png"/>
</center>
</td>
</tr>
</table>
<!-- <table align=center width=850px>
<tr>
<td>
This was a template originally made for <a href="http://richzhang.github.io/colorization/">Colorful Image Colorization</a>. The code can be found in this <a href="https://github.com/richzhang/webpage-template">repository</a>.
</td>
</tr>
</table> -->
</center>
<hr>
<table align=center width=850px>
<center><h1>Abstract</h1></center>
<tr>
<td>
In this work, we focus on semi-supervised learning for
video action detection which utilizes both labeled as well
as unlabeled data. We propose a simple end-to-end consistency based approach which effectively utilizes the un-
labeled data. Video action detection requires both, action
class prediction as well as a spatio-temporal localization
of actions. Therefore, we investigate two types of constraints, classification consistency, and spatio-temporal
consistency. The presence of predominant background
and static regions in a video makes it challenging to utilize spatio-temporal consistency for action detection. To
address this, we propose two novel regularization constraints for spatio-temporal consistency; 1) temporal co-
herency, and 2) gradient smoothness. Both these aspects exploit the temporal continuity of action in videos
and are found to be effective for utilizing unlabeled videos
for action detection. We demonstrate the effectiveness of
the proposed approach on two different action detection
benchmark datasets, UCF101-24 and JHMDB-21. In addition, we also show the effectiveness of the proposed ap-
proach for video object segmentation on the Youtube-VOS
which demonstrates its generalization capability. The proposed approach achieves competitive performance by us-
ing merely 20% of annotations on UCF101-24 when compared with recent fully supervised methods. On UCF101-24, it improves the score by +8.9% and +11% at 0.5 f-mAP
and v-mAP respectively, compared to supervised approach.
</td>
</tr>
</table>
<br>
<hr>
<center><h1>Talk</h1></center>
<p align="center">
<iframe width="660" height="395" src="https://www.youtube.com/watch?v=BNe37tsu3Zo&t=31s&ab_channel=AkashKumar" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen align="center"></iframe>
</p>
<!-- <table align=center width=800px>
<br>
<tr>
<center>
<span style="font-size:28px"><a href=''>[Slides]</a>
</span>
</center>
</tr>
</table> -->
<hr>
<center><h1>Code</h1></center>
<table align=center width=420px>
<center>
<tr>
<td>
</td>
</tr>
</center>
</table>
<!-- <table align=center width=400px>
<tr>
<td align=center width=400px>
<center>
<td><img class="round" style="width:450px" src="./resources/method_diagram.png"/></td>
</center>
</td>
</tr>
</table> -->
<!-- <table align=center width=850px>
<center>
<tr>
<td>
Short description if wanted
</td>
</tr>
</center>
</table> -->
<!-- <table align=center width=800px>
<br>
<tr><center>
<span style="font-size:28px"> <a href='https://github.com/richzhang/webpage-template'>[GitHub]</a>
</center>
</span>
</table> -->
<br>
<hr>
<table align=center width=450px>
<center><h1>Paper and Supplementary Material</h1></center>
<tr>
<td><a href=""><img class="layered-paper-big" style="height:175px" src="./resources/paper.png"/></a></td>
<td><span style="font-size:14pt">Akash Kumar, Yogesh Singh Rawat.<br>
<b>End-to-End Semi-Supervised Learning for Video Action Detection.</b><br>
CVPR, 2022.<br>
<a href="https://openaccess.thecvf.com/content/CVPR2022/papers/Kumar_End-to-End_Semi-Supervised_Learning_for_Video_Action_Detection_CVPR_2022_paper.pdf">PDF</a>|<a href="https://arxiv.org/pdf/2203.04251v3.pdf">Arxiv</a>|<a href="https://openaccess.thecvf.com/content/CVPR2022/supplemental/Kumar_End-to-End_Semi-Supervised_Learning_CVPR_2022_supplemental.pdf">Supplementary</a><br>
<!-- (<a href="./resources/camera-ready.pdf">camera ready</a>)<br> -->
<span style="font-size:4pt"><a href=""><br></a>
</span>
</td>
</tr>
</table>
<br>
<table align=center width=600px>
<tr>
<td><span style="font-size:14pt"><center>
<a href="./asset/bibtex.txt">[Bibtex]</a>
</center></td>
</tr>
</table>
<hr>
<br>
<table align=center width=900px>
<tr>
<td width=400px>
<left>
<center><h1>Acknowledgements</h1></center>
This template was originally made by <a href="http://web.mit.edu/phillipi/">Phillip Isola</a> and <a href="http://richzhang.github.io/">Richard Zhang</a> for a <a href="http://richzhang.github.io/colorization/">colorful</a> ECCV project; the code can be found <a href="https://github.com/richzhang/webpage-template">here</a>.
</left>
</td>
</tr>
</table>
<br>
</body>
</html>