diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 0157e19f003..3d340fc9b21 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -38,9 +38,6 @@ optimizers = [] current_optimizer: sd_hijack_optimizations.SdOptimization = None -ldm_original_forward = patches.patch(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sd_unet.UNetModel_forward) -sgm_original_forward = patches.patch(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sd_unet.UNetModel_forward) - def list_optimizers(): new_optimizers = script_callbacks.list_optimizers_callback() @@ -258,6 +255,9 @@ def flatten(el): import modules.models.diffusion.ddpm_edit + ldm_original_forward = patches.patch(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sd_unet.UNetModel_forward) + sgm_original_forward = patches.patch(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sd_unet.UNetModel_forward) + if isinstance(m, ldm.models.diffusion.ddpm.LatentDiffusion): sd_unet.original_forward = ldm_original_forward elif isinstance(m, modules.models.diffusion.ddpm_edit.LatentDiffusion): @@ -303,6 +303,9 @@ def undo_hijack(self, m): self.layers = None self.clip = None + patches.undo(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward") + patches.undo(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward") + sd_unet.original_forward = None diff --git a/modules/sd_models.py b/modules/sd_models.py index 841402e8629..9355f1e16b7 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -230,15 +230,19 @@ def select_checkpoint(): return checkpoint_info -checkpoint_dict_replacements = { +checkpoint_dict_replacements_sd1 = { 'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.', 'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.', 'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.', } +checkpoint_dict_replacements_sd2_turbo = { # Converts SD 2.1 Turbo from SGM to LDM format. + 'conditioner.embedders.0.': 'cond_stage_model.', +} + -def transform_checkpoint_dict_key(k): - for text, replacement in checkpoint_dict_replacements.items(): +def transform_checkpoint_dict_key(k, replacements): + for text, replacement in replacements.items(): if k.startswith(text): k = replacement + k[len(text):] @@ -249,9 +253,14 @@ def get_state_dict_from_checkpoint(pl_sd): pl_sd = pl_sd.pop("state_dict", pl_sd) pl_sd.pop("state_dict", None) + is_sd2_turbo = 'conditioner.embedders.0.model.ln_final.weight' in pl_sd and pl_sd['conditioner.embedders.0.model.ln_final.weight'].size()[0] == 1024 + sd = {} for k, v in pl_sd.items(): - new_key = transform_checkpoint_dict_key(k) + if is_sd2_turbo: + new_key = transform_checkpoint_dict_key(k, checkpoint_dict_replacements_sd2_turbo) + else: + new_key = transform_checkpoint_dict_key(k, checkpoint_dict_replacements_sd1) if new_key is not None: sd[new_key] = v