-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.rs
121 lines (107 loc) · 3.79 KB
/
main.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
fn main() {
let n5 = ListNode { val: 5, next: None };
let n4 = ListNode { val: 4, next: Some(Box::new(n5)) };
let n3 = ListNode { val: 3, next: Some(Box::new(n4)) };
let n2 = ListNode { val: 2, next: Some(Box::new(n3)) };
let n1 = ListNode { val: 1, next: Some(Box::new(n2)) };
let input = Some(Box::new(n1));
Solution::rotate_right(input, 2);
Solution::rotate_right(Some(Box::new(ListNode { val: 1, next: None })), 1);
}
// Definition for singly-linked list.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct ListNode {
pub val: i32,
pub next: Option<Box<ListNode>>
}
impl ListNode {
#[inline]
fn new(val: i32) -> Self {
ListNode {
next: None,
val
}
}
}
struct Solution {}
impl Solution {
pub fn rotate_right(mut head: Option<Box<ListNode>>, k: i32) -> Option<Box<ListNode>> {
if head.is_none() || k <= 0 { return head }
// Step 1 - loop the linked-list and count total length (Don't need mut)
let mut ptr: Option<&Box<ListNode>> = head.as_ref();
let mut list_len = 0;
while let Some(node) = ptr {
ptr = node.next.as_ref();
list_len += 1;
}
// Step 2 - calculate the curoff place and reach that node using &mut Box
// because this time we want to mutate the list
let cutoff_cnt = list_len - k % list_len;
if cutoff_cnt == list_len { return head }
let mut ptr: &mut Box<ListNode> = head.as_mut().unwrap();
let mut i = 1;
while i < cutoff_cnt {
ptr = ptr.next.as_mut().unwrap();
i += 1;
}
// Step 3 - Split into two list and then concatenate
// head owns one list and new_head owns the other
let mut new_head: Option<Box<ListNode>> = ptr.next.take(); // split
let mut ptr: Option<&mut Box<ListNode>> = new_head.as_mut();
while let Some(node) = ptr {
if node.next.is_none() { ptr = Some(node); break }
ptr = node.next.as_mut();
}
ptr.unwrap().next = head; // concatenate
new_head
}
}
#[cfg(test)]
mod test {
use crate::*;
#[test]
fn basic1() {
let n5 = ListNode { val: 5, next: None };
let n4 = ListNode { val: 4, next: Some(Box::new(n5)) };
let n3 = ListNode { val: 3, next: Some(Box::new(n4)) };
let n2 = ListNode { val: 2, next: Some(Box::new(n3)) };
let n1 = ListNode { val: 1, next: Some(Box::new(n2)) };
let input = Some(Box::new(n1));
let n5 = ListNode { val: 3, next: None };
let n4 = ListNode { val: 2, next: Some(Box::new(n5)) };
let n3 = ListNode { val: 1, next: Some(Box::new(n4)) };
let n2 = ListNode { val: 5, next: Some(Box::new(n3)) };
let n1 = ListNode { val: 4, next: Some(Box::new(n2)) };
let output = Some(Box::new(n1));
assert_eq!(
Solution::rotate_right(input, 2),
output
)
}
#[test]
fn basic2() {
let n3 = ListNode { val: 2, next: None };
let n2 = ListNode { val: 1, next: Some(Box::new(n3)) };
let n1 = ListNode { val: 0, next: Some(Box::new(n2)) };
let input = Some(Box::new(n1));
let n3 = ListNode { val: 1, next: None };
let n2 = ListNode { val: 0, next: Some(Box::new(n3)) };
let n1 = ListNode { val: 2, next: Some(Box::new(n2)) };
let output = Some(Box::new(n1));
assert_eq!(
Solution::rotate_right(input, 4),
output
)
}
#[test]
fn edge() {
assert_eq!(
Solution::rotate_right(None, 4),
None
);
assert_eq!(
Solution::rotate_right(Some(Box::new(ListNode { val: 1, next: None })), 1),
Some(Box::new(ListNode { val: 1, next: None }))
)
}
}