forked from greisane/gret
-
Notifications
You must be signed in to change notification settings - Fork 0
/
color.py
116 lines (91 loc) · 3.45 KB
/
color.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from math import atan2, cos, exp, pi, sin, sqrt
fmt_frgba = lambda r, g, b, a: "#%02X%02X%02X%02X" % (int(r*255), int(g*255), int(b*255), int(a*255))
def rgb2xyz(rgb):
"""Converts RGB color into XYZ format."""
def format(c):
# c = c / 255.
if c > 0.04045: c = ((c + 0.055) / 1.055) ** 2.4
else: c = c / 12.92
return c * 100
rgb = list(map(format, rgb))
xyz = [None, None, None]
xyz[0] = rgb[0] * 0.4124 + rgb[1] * 0.3576 + rgb[2] * 0.1805
xyz[1] = rgb[0] * 0.2126 + rgb[1] * 0.7152 + rgb[2] * 0.0722
xyz[2] = rgb[0] * 0.0193 + rgb[1] * 0.1192 + rgb[2] * 0.9505
return xyz
def xyz2lab(xyz):
"""Converts XYZ pixel array to LAB format."""
# Implementation derived from http://www.easyrgb.com/en/math.php
def format(c):
if c > 0.008856: c = c ** (1. / 3.)
else: c = (7.787 * c) + (16. / 116.)
return c
xyz[0] = xyz[0] / 95.047
xyz[1] = xyz[1] / 100.00
xyz[2] = xyz[2] / 108.883
xyz = list(map(format, xyz))
lab = [None, None, None]
lab[0] = (116. * xyz[1]) - 16.
lab[1] = 500. * (xyz[0] - xyz[1])
lab[2] = 200. * (xyz[1] - xyz[2])
return lab
def rgb2lab(rgb):
"""Converts RGB color into LAB format."""
return xyz2lab(rgb2xyz(rgb))
def ciede2000(Lab_1, Lab_2):
"""Calculates CIEDE2000 color distance between two CIE L*a*b* colors."""
# From https://github.com/lovro-i/CIEDE2000
C_25_7 = 6103515625 # 25**7
L1, a1, b1 = Lab_1[0], Lab_1[1], Lab_1[2]
L2, a2, b2 = Lab_2[0], Lab_2[1], Lab_2[2]
C1 = sqrt(a1**2 + b1**2)
C2 = sqrt(a2**2 + b2**2)
C_ave = (C1 + C2) / 2
G = 0.5 * (1 - sqrt(C_ave**7 / (C_ave**7 + C_25_7)))
L1_, L2_ = L1, L2
a1_, a2_ = (1 + G) * a1, (1 + G) * a2
b1_, b2_ = b1, b2
C1_ = sqrt(a1_**2 + b1_**2)
C2_ = sqrt(a2_**2 + b2_**2)
if b1_ == 0 and a1_ == 0: h1_ = 0
elif a1_ >= 0: h1_ = atan2(b1_, a1_)
else: h1_ = atan2(b1_, a1_) + 2 * pi
if b2_ == 0 and a2_ == 0: h2_ = 0
elif a2_ >= 0: h2_ = atan2(b2_, a2_)
else: h2_ = atan2(b2_, a2_) + 2 * pi
dL_ = L2_ - L1_
dC_ = C2_ - C1_
dh_ = h2_ - h1_
if C1_ * C2_ == 0: dh_ = 0
elif dh_ > pi: dh_ -= 2 * pi
elif dh_ < -pi: dh_ += 2 * pi
dH_ = 2 * sqrt(C1_ * C2_) * sin(dh_ / 2)
L_ave = (L1_ + L2_) / 2
C_ave = (C1_ + C2_) / 2
_dh = abs(h1_ - h2_)
_sh = h1_ + h2_
C1C2 = C1_ * C2_
if _dh <= pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2
elif _dh > pi and _sh < 2 * pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2 + pi
elif _dh > pi and _sh >= 2 * pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2 - pi
else: h_ave = h1_ + h2_
T = (1 - 0.17 * cos(h_ave - pi / 6)
+ 0.24 * cos(2 * h_ave)
+ 0.32 * cos(3 * h_ave + pi / 30)
- 0.2 * cos(4 * h_ave - 63 * pi / 180))
h_ave_deg = h_ave * 180 / pi
if h_ave_deg < 0: h_ave_deg += 360
elif h_ave_deg > 360: h_ave_deg -= 360
dTheta = 30 * exp(-(((h_ave_deg - 275) / 25)**2))
R_C = 2 * sqrt(C_ave**7 / (C_ave**7 + C_25_7))
S_C = 1 + 0.045 * C_ave
S_H = 1 + 0.015 * C_ave * T
Lm50s = (L_ave - 50)**2
S_L = 1 + 0.015 * Lm50s / sqrt(20 + Lm50s)
R_T = -sin(dTheta * pi / 90) * R_C
k_L, k_C, k_H = 1, 1, 1
f_L = dL_ / k_L / S_L
f_C = dC_ / k_C / S_C
f_H = dH_ / k_H / S_H
dE_00 = sqrt(f_L**2 + f_C**2 + f_H**2 + R_T * f_C * f_H)
return dE_00