[net] # Testing #batch=1 #subdivisions=1 # Training batch=64 subdivisions=4 width=544 height=544 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 mosaic=1 learning_rate=0.0001 burn_in=1000 max_batches = 10000 policy=sgdr #sgdr_cycle=1000 #sgdr_mult=2 #steps=4000,6000,8000,9000 #scales=1, 1, 0.1, 0.1 [convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=swish # remove [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=swish [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=swish [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=swish assisted_excitation=4000 [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=swish [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=swish [maxpool] size=2 stride=1 [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=swish ########### [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=swish [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=swish ########### to [yolo-3] [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=swish [upsample] stride=2 [route] layers = -1, 8 ########### [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=swish [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=swish ########### to [yolo-2] [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=swish [upsample] stride=2 [route] layers = -1, 6 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=swish [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=swish ########### features of different layers [route] layers=2 [maxpool] size=16 stride=16 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=swish [route] layers=4 [maxpool] size=8 stride=8 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=swish [route] layers=4 [maxpool] size=8 stride=4 stride_x=4 stride_y=8 [convolutional] batch_normalize=1 filters=64 size=1 stride=2 stride_x=2 stride_y=1 pad=1 activation=swish [route] layers=4 [maxpool] size=8 stride=8 stride_x=8 stride_y=4 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 stride_x=1 stride_y=2 pad=1 activation=swish [route] layers=4 [maxpool] size=8 stride=8 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=swish [route] layers=6 [maxpool] size=4 stride=4 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=swish [route] layers=6 [maxpool] size=4 stride=2 stride_x=2 stride_y=4 [convolutional] batch_normalize=1 filters=64 size=1 stride=2 stride_x=2 stride_y=1 pad=1 activation=swish [route] layers=6 [maxpool] size=4 stride=4 stride_x=4 stride_y=2 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 stride_x=1 stride_y=2 pad=1 activation=swish [route] layers=8 [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=swish [route] layers=10 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=swish [route] layers=-1, -3, -6, -9, -12, -15, -18, -21, -24, -27 [maxpool] maxpool_depth=1 out_channels=64 stride=1 size=1 ########### [yolo-1] [upsample] stride=4 [route] layers = -1,24 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=swish [convolutional] size=1 stride=1 pad=1 filters=50 activation=linear [Gaussian_yolo] yolo_point=center mask = 0,1,2,3,4 anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326 classes=1 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 iou_thresh=0.213 iou_normalizer=0.5 uc_normalizer=0.5 cls_normalizer=1.0 iou_loss=mse scale_x_y = 1.1 random=0 [route] layers = -4 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=swish [convolutional] size=1 stride=1 pad=1 filters=50 activation=linear [Gaussian_yolo] yolo_point=left_top mask = 0,1,2,3,4 anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326 classes=1 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 iou_thresh=0.213 iou_normalizer=0.5 uc_normalizer=0.5 cls_normalizer=1.0 iou_loss=mse scale_x_y = 1.1 random=0 [route] layers = -4 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=swish [convolutional] size=1 stride=1 pad=1 filters=50 activation=linear [Gaussian_yolo] yolo_point=right_bottom mask = 0,1,2,3,4 anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326 classes=1 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 iou_thresh=0.213 iou_normalizer=0.5 uc_normalizer=0.5 cls_normalizer=1.0 iou_loss=mse scale_x_y = 1.1 random=0 ########### [yolo-2] [route] layers = -14 [upsample] stride=2 [route] layers = -1,19 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=swish [convolutional] size=1 stride=1 pad=1 filters=50 activation=linear [Gaussian_yolo] yolo_point=center mask = 4,5,6,7,8 anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326 classes=1 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 iou_thresh=0.213 iou_normalizer=0.5 uc_normalizer=0.5 cls_normalizer=1.0 iou_loss=mse scale_x_y = 1.1 random=0 [route] layers = -4 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=swish [convolutional] size=1 stride=1 pad=1 filters=50 activation=linear [Gaussian_yolo] yolo_point=left_top mask = 4,5,6,7,8 anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326 classes=1 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 iou_thresh=0.213 iou_normalizer=0.5 uc_normalizer=0.5 cls_normalizer=1.0 iou_loss=mse scale_x_y = 1.1 random=0 [route] layers = -4 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=swish [convolutional] size=1 stride=1 pad=1 filters=50 activation=linear [Gaussian_yolo] yolo_point=right_bottom mask = 4,5,6,7,8 anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326 classes=1 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 iou_thresh=0.213 iou_normalizer=0.5 uc_normalizer=0.5 cls_normalizer=1.0 iou_loss=mse scale_x_y = 1.1 random=0 ########### [yolo-3] [route] layers = 55 [route] layers = -1,14 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=swish [convolutional] size=1 stride=1 pad=1 filters=40 activation=linear [Gaussian_yolo] yolo_point=center mask = 8,9,10,11 anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 59,119, 80,80, 116,90, 156,198, 373,326 classes=1 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 iou_thresh=0.213 iou_normalizer=0.5 uc_normalizer=0.5 cls_normalizer=1.0 iou_loss=mse scale_x_y = 1.1 random=0 [route] layers = -4 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=swish [convolutional] size=1 stride=1 pad=1 filters=40 activation=linear [Gaussian_yolo] yolo_point=left_top mask = 8,9,10,11 anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 59,119, 80,80, 116,90, 156,198, 373,326 classes=1 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 iou_thresh=0.213 iou_normalizer=0.5 uc_normalizer=0.5 cls_normalizer=1.0 iou_loss=mse scale_x_y = 1.1 random=0 [route] layers = -4 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=swish [convolutional] size=1 stride=1 pad=1 filters=40 activation=linear [Gaussian_yolo] yolo_point=right_bottom mask = 8,9,10,11 anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 59,119, 80,80, 116,90, 156,198, 373,326 classes=1 num=12 jitter=.3 ignore_thresh = .7 truth_thresh = 1 iou_thresh=0.213 iou_normalizer=0.5 uc_normalizer=0.5 cls_normalizer=1.0 iou_loss=mse scale_x_y = 1.1 random=0