Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Failed to build yolo_v3_tiny_pan_lstm from issue 3114 #6531

Open
peijason opened this issue Aug 21, 2020 · 2 comments
Open

Failed to build yolo_v3_tiny_pan_lstm from issue 3114 #6531

peijason opened this issue Aug 21, 2020 · 2 comments

Comments

@peijason
Copy link

peijason commented Aug 21, 2020

If you want to report a bug - provide:
* description of a bug: Failed to build yolo_v3_tiny_pan_lstm from issue 3114
* what command do you use? darknet detector train data/self_driving.data cfg/yolo_v3_tiny_pan_lstm.cfg yolov3-tiny.conv.14 -map -dont_show
* do you use Win/Linux/Mac? Linux Ubuntu 20.04

⋊> ....../darknet on master ◦ nvidia-smi                                                                                                                                                         15:21:28
Fri Aug 21 15:21:31 2020       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.57       Driver Version: 450.57       CUDA Version: 11.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce GTX 1050Ti  Off  | 00000000:01:00.0 Off |                  N/A |
| N/A   47C    P0    N/A /  N/A |    816MiB /  4042MiB |      2%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      1377      G   /usr/lib/xorg/Xorg                 80MiB |
|    0   N/A  N/A      2043      G   /usr/lib/xorg/Xorg                323MiB |
|    0   N/A  N/A      2234      G   /usr/bin/gnome-shell              121MiB |
|    0   N/A  N/A      2406      G   seadrive-gui                        1MiB |
|    0   N/A  N/A      2689      G   ...AAAAAAAAA= --shared-files       24MiB |
|    0   N/A  N/A      3216      G   ...token=7574150999326190285      141MiB |
|    0   N/A  N/A      3872      G   ...AAAAAAAAA= --shared-files      113MiB |
+-----------------------------------------------------------------------------+

CUDNN version: 8.0.2

⋊> ....../darknet on master ◦ ./darknet detector train data/self_driving.data cfg/yolo_v3_tiny_pan_lstm.cfg yolov3-tiny.conv.14 -map -dont_show 
......
[yolo] params: iou loss: mse (2), iou_norm: 0.75, cls_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 23.447 
avg_outputs = 689534 
Loading weights from yolov3-tiny.conv.14...
 seen 64, trained: 0 K-images (0 Kilo-batches_64) 
Done! Loaded 14 layers from weights-file 
Learning Rate: 0.001, Momentum: 0.9, Decay: 0.0005
 Detection layer: 46 - type = 27 
 Detection layer: 53 - type = 27 
 Detection layer: 59 - type = 27 

 Tracking! batch = 6, subdiv = 16, time_steps = 3, mini_batch = 2 
 Create 4 permanent cpu-threads 
 sequential_subdivisions = 4, sequence = 4 
Loaded: 1.888440 seconds
v3 (mse loss, Normalizer: (iou: 0.75, cls: 1.00) Region 46 Avg (IOU: 0.319579, GIOU: 0.258581), Class: 0.519559, Obj: 0.416531, No Obj: 0.489394, .5R: 0.000000, .75R: 0.000000, count: 9, class_loss = 3612.610107, iou_loss = 3.847982, total_loss = 3616.458008 
v3 (mse loss, Normalizer: (iou: 0.75, cls: 1.00) Region 53 Avg (IOU: 0.000000, GIOU: 0.000000), Class: 0.000000, Obj: 0.000000, No Obj: 0.562382, .5R: 0.000000, .75R: 0.000000, count: 1, class_loss = 1152.953857, iou_loss = 0.000000, total_loss = 1152.953857 
v3 (mse loss, Normalizer: (iou: 0.75, cls: 1.00) Region 59 Avg (IOU: 0.000000, GIOU: 0.000000), Class: 0.000000, Obj: 0.000000, No Obj: 0.554808, .5R: 0.000000, .75R: 0.000000, count: 1, class_loss = 282.553375, iou_loss = 0.000000, total_loss = 282.553375 
CUDA status Error: file: ....../darknet/src/maxpool_layer_kernels.cu : () : line: 248 : build time: Aug  4 2020 - 12:41:13 

 CUDA Error: an illegal memory access was encountered
CUDA Error: an illegal memory access was encountered: Success

And some times, it's showing:

 cuDNN status Error in: file: ....../darknet/src/convolutional_kernels.cu : () : line: 821 : build time: Aug  4 2020 - 12:41:04

Cheers

@arnaud-nt2i
Copy link

hi @peijason
I have the same issue on W10, have you found an answer?

@arnaud-nt2i
Copy link

Ok I have found a walkaround, by using "Yolo v3 optimal" here: https://github.com/AlexeyAB/darknet/releases/tag/darknet_yolo_v3_optimal

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants