-
Notifications
You must be signed in to change notification settings - Fork 33
/
predict.py
106 lines (88 loc) · 3.16 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import cv2
import argparse
import sys, os
import numpy as np
import torch
from PIL import Image
from torchvision.transforms import (
Compose,
Resize,
CenterCrop,
ToTensor,
Normalize,
InterpolationMode,
)
import torchvision.utils as tvutils
sys.path.insert(0, "universal-image-restoration")
sys.path.insert(0, "universal-image-restoration/config/daclip-sde")
import options as option
from models import create_model
import open_clip
import utils as util
from cog import BasePredictor, Input, Path
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
config_file = "universal-image-restoration/config/daclip-sde/options/test.yml"
opt = option.parse(config_file, is_train=False)
opt = option.dict_to_nonedict(opt)
# download daclip_ViT-B-32.pt to ./pretrained first
self.model = create_model(opt)
self.device = self.model.device
self.clip_model, preprocess = open_clip.create_model_from_pretrained(
"daclip_ViT-B-32", pretrained=opt["path"]["daclip"]
)
self.clip_model = self.clip_model.to(self.device)
self.sde = util.IRSDE(
max_sigma=opt["sde"]["max_sigma"],
T=opt["sde"]["T"],
schedule=opt["sde"]["schedule"],
eps=opt["sde"]["eps"],
device=self.device,
)
self.sde.set_model(self.model.model)
def predict(
self,
image: Path = Input(description="Input image"),
) -> Path:
"""Run a single prediction on the model"""
image = cv2.imread(str(image))
image = image[:, :, [2, 1, 0]] / 255.0
img4clip = clip_transform(image).unsqueeze(0).to(self.device)
with torch.no_grad(), torch.cuda.amp.autocast():
image_context, degra_context = self.clip_model.encode_image(
img4clip, control=True
)
image_context = image_context.float()
degra_context = degra_context.float()
LQ_tensor = (
torch.tensor(image, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0)
)
noisy_tensor = self.sde.noise_state(LQ_tensor)
self.model.feed_data(
noisy_tensor,
LQ_tensor,
text_context=degra_context,
image_context=image_context,
)
self.model.test(self.sde)
visuals = self.model.get_current_visuals(need_GT=False)
output = util.tensor2img(visuals["Output"].squeeze())
out_path = "/tmp/out.png"
cv2.imwrite(out_path, output)
return Path(out_path)
def clip_transform(np_image, resolution=224):
pil_image = Image.fromarray((np_image * 255).astype(np.uint8))
return Compose(
[
Resize(resolution, interpolation=InterpolationMode.BICUBIC),
CenterCrop(resolution),
ToTensor(),
Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
]
)(pil_image)