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Abstract
Superpixels are regions grouped by similarities such as color,
texture and proximity, which are used in several computer
vision tasks such as object detection, semantic segmentation,
video tracking and selective search framework. Many super-
pixel algorithms have been developed, among which SLIC (Sim-
ple Linear Iterative Clustering) is one of the most commonly
used algorithms because of its simplicity and low computa-
tional cost. However, the existing methods fail to be used in
real-time environment, because they either have high latency or
sacrifice accuracy for speed. In this paper, we present FastSLIC,
an optimized variant of SLIC. We propose color quantization,
integer-only arithmetic for clustering and row subsampling
for computational efficiency. We also devise a tiling scheme
for multicore parallelization. As a result, we observe it runs
10×-33× faster than the conventional SLIC and outperforms
the existing methods. Furthermore, we observe the performance
of our method is comparable to that of a GPU implementation
of SLIC. We evaluate it on BSDS500 dataset in three accuracy
metrics and observe it retains the accuracy of the original SLIC.

1 Introduction
Superpixels are regions grouped by similarities such as color,
texture and proximity. They are used in object detection [33],
semantic segmentation [7, 24], video tracking [8, 9, 31] and
selective search framework [28]. Using superpixels can greatly
reduce the computational cost by grouping hundreds of thou-
sands of pixels to a few thousand superpixels, making it an
attractive technique when low processing time is required.
Many superpixel extraction methods fall into two cat-

egories: the graph-based methods and the gradient-based
methods. The graph-based methods represent each pixel as a
vertex in a graph and similarity between neighboring pixels
as an edge. Normalized Cut [26] divides a graph to multi-
ple subgraphs by minimizing intra-group association cost
and maximizing inter-group association cost. Felzenszwalb-
Huttenlocher [5] starts from pixel-wise clusters and merge
neighboring clusters in the bottom-up fashion. The gradient-
based methods refine trainable parameters toward local max-
ima or local mimima, which is often performed iteratively
until convergence. SLIC [3] is based on k-means cluster-
ing algorithm [17, 18] on 5-dimensional vectors on both
color and position. LSC [15] performs clustering similar to
SLIC, but in a high-dimensional feature space. SEEDS [29]
uses iterative hill-climbing optimization for finding partition-
ing maximizing the energy function. Methods using other

Figure 1. Examples of superpixel segmentation.

approaches were also developed, such as watershed trans-
form [21, 30] and sampling from quantized region [12, 13].
Recently, several methods leveraging deep learning method
were developed for more accurate superpixels [14, 27].

While superpixels can reduce the time taken by subse-
quent processes in pipeline, there is one drawback of using
them: the extraction itself takes a significant amount of time.
This makes it hard to utilize superpixels in real-time envi-
ronments where extremely low latency is required. While
several fast algorithms have been proposed for this purpose,
they often come with low accuracy.

We propose FastSLIC, an optimized variant of SLIC, which
uses quantization, subsampling and parallelization in order
to reduce the latency. Our method runs 10 to 33 times faster
than the conventional SLIC without any compromise of ac-
curacy. To our best knowledge, the proposed method is the
state-of-art superpixel extraction method in terms of run-
ning time and its performance is even comparable to a GPU
implementation.

We make the following contributions:
• We provide a quantization scheme and a new distance
metric based on 16-bit and 8-bit integer-only arith-
metic, which allows for more efficient SIMD paral-
lelization and less computational cost.
• We propose row subsampling scheme which substan-
tially reduces latency without accuracy loss.
• We devise a tiling scheme to safely parallelize the clus-
ter assignment, a bottleneck of our algorithm.
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• We release the code as a python package so it can be
easily used in prototyping. The code is published in
github and publicly available. 1

2 Related Work
Neubert et al. [20] shows that the running times of superpixel
algorithms differ in at most five orders of magnitudes. Several
fast methods have been proposed in literature.

Lightweight algorithms Watershed [30] is the one of fastest
segmentation method generating segmentation by flooding
an image surface. However, it has a drawback that shapes and
sizes of the extracted superpixels tend to be irregular. Com-
pact Watershed [21] addresses this problem by incorporating
a spatial distance term to seed points, in the similar way to
SLIC. USEQ [12] and USEAQ [13] achieve fast superpixel
extraction via sampling from quantized region, which also
support multi-core parallelization in their implementations.

SLIC-variants Preemptive-SLIC [21] is a novel extension
of SLIC in which a cluster is not updated after it is stabilized
and no more number of associated pixels than threshold are
updated. SNIC [4] makes use of a priority queue to visit each
pixel only once to achieve low latency and high accuracy.

Dedicated hardware There have been attempts to run
SLIC on hardware other than CPUs. gSLICr [23] is a GPU
implementation of SLIC running over 250hz. In addition, a
hardware accelerator for SLIC is proposed in [11]. Despite
their low latency, they often require expensive specialized
hardware and are not suitable to general-purpose machines
such as mobile devices.

3 Background
3.1 SLIC
SLIC (Simple Linear Iterative Clustering Algorithm) [3] is
one of the most commonly used superpixel algorithms be-
cause of its simplicity and low computational cost. It is based
on k-means clustering in 5-dimension feature space: 2 di-
mensions for y-x coordinates of a pixel and 3 dimensions for
three color intensities of the pixel in CIELAB color space.

K-means clustering aims forminimizing the objective func-
tion, the sum of euclidean distances between each centroid
and the points assigned to it. SLIC performs K-means clus-
tering on pixels and centroids placed on a CIELAB image, as
illustrated in Figure 2. It puts seed centroids on a regular grid
initially and then it repeats to alternate cluster assignment
and centroid update until clusters converge or max iteration
reached. In cluster assignment phase, each pixel is assigned
to the closest centroid. In cluster update phase, each centroid
is moved to the center of feature vectors of pixels that belong
to the centroid.

1https://github.com/Algy/fast-slic

Because the clustering does not guarantee pixel connectiv-
ity, a few stray pixels may remain [3]. To address this, Con-
nected Component Labeling (CCL), a procedure to assign
a unique label to each connected component in image [32],
can be used to search for small connected components in a
cluster label map. The original SLIC implementation incorpo-
rates a simple one-pass CCL for locating small isolated blobs
and enforce connectivity by merging them into neighboring
components.

The key to the computational efficiency of SLIC is that it
only searches a limited area for candidate pixels of a centorid.
Let 𝐾,𝐻,𝑊 be the number of superpixels, height, and width
of an image, respectively. The approximate width of a square
superpixel is roughly given by eq. (1). Only pixels within
(2𝑆 + 1) × (2𝑆 + 1) area around the center of cluster are
considered.

𝑆 =

√
𝑊 × 𝐻
𝐾

(1)

In the original paper, a distance metric between a pixel 𝑖
and a centroid 𝑘 is a normalized euclidean distance, defined
as eq. (2), where [𝑦𝑘 , 𝑥𝑘 , 𝑙∗𝑘 , 𝑎

∗
𝑘
, 𝑏∗

𝑘
]𝑇 is the feature vector of

centroid and [𝑦𝑖 , 𝑥𝑖 , 𝑙∗𝑖 , 𝑎∗𝑖 , 𝑏∗𝑖 ]𝑇 is the feature vector of pixel 𝑖
[2].𝑚 is compactness, a normalizing factor for color distance.
The higher the value of𝑚 is, the more compact a superpixel
becomes.

𝐷𝑖𝑘 =

√
(𝑙∗
𝑘
− 𝑙∗

𝑖
)2 + (𝑎∗

𝑘
− 𝑎∗

𝑘
)2 + (𝑏∗

𝑘
− 𝑏∗

𝑘
)2

+
𝑚

𝑆

√
(𝑦𝑘 − 𝑦𝑖 )2 + (𝑥𝑘 − 𝑥𝑘 )2

(2)

The formula similar to eq. (3) is used instead in the other
work of the authors of SLIC [3, 4]. It has a benefit on perfor-
mance as expensive 𝑠𝑞𝑟𝑡 function is avoided.

𝐷2
𝑖𝑘

= (𝑙∗
𝑘
− 𝑙∗𝑖 )2 + (𝑎∗𝑘 − 𝑎

∗
𝑘
)2 + (𝑏∗

𝑘
− 𝑏∗

𝑘
)2

+
𝑚2

𝑆2
((𝑦𝑘 − 𝑦𝑖 )2 + (𝑥𝑘 − 𝑥𝑘 )2)

(3)

3.2 Parallelization
SIMD(Single Instruction, Multiple Data) is a parallelization
paradigm where multiple elements are packed into a vector
and the same operation on multiple elements can be per-
formed at once. Depending on the actual architecture and
the precision used, SIMD extensions can boost the potential
peak performance by up to a factor of four in case of SSE [6].

AVX2 and NEON are used in this research, both of which
are popular choices for SIMD parallelization in their cor-
responding architectures. AVX2 is a SIMD architecture for
x64, which comes up with 256-bit vector instructions. ARM

2



Figure 2. Overview of SLIC superpixel extraction.

NEON is a SIMD architecture with 128-bit vector instruc-
tions, which was introduced to ARMv7-A and ARM7-R pro-
files [1]. Not only does NEON yield 1.6x-2.5x speed gain on
complex video codecs, it also has a benefit of saving power
[22].
Distributing workloads to multiple cores has been a ma-

jor strategy to further improve performance. While some
problems such as matrix multiplication and monte-carlo sim-
ulation are embarrassingly parallel, meaning it is so easy
to evenly distribute workload onto multiple cores by its na-
ture, other problems are so inherently serial that it cannot be
parallelized easily without alteration to its core mechanism.
One of the problems with the existing superpixel algorithms
is that they are either inherently serial or not optimized well
to a multi-core cpu. We present a novel tiling method to
address this issue in order to run SLIC on multiple cores.

4 FastSLIC
Our algorithm runs an order of magnitudes faster than the
original SLIC by introducing several modifications. In this
section, those improvements are described. In the rest of
paper, it is assumed that an array index is zero-based and a
two-dimensional array is row major.
We optimize the following bottlenecks: CIELAB conver-

sion and quantization, cluster assignment, centroid update
and connectivity enforcement.
We first convert a RGB image to a quantized CIELAB

image represented with unsigned 8-bit integers. Then, we
repeat to assign each pixel to a cluster and update each
centroid to a mean vector of their member pixels. After max
iteration reached, pixel connectivity of cluster label map is
enforced. The brief description of our algorithm is shown in
Algorithm 1.

4.1 Integer-only arithmetic and Quantization
Integer-only arithmetic with quantization is advantageous
in regards to both SIMD vectorization and computational
efficiency. First, when it comes to SIMD, the less element
integer size, the more elements a vector contains, implying
more elements can be computed at the same time. In the
case, performance gain is easily achievable simply by using
lower integer size. Second, accessing to small-sized array
results in less memory footprint, contributing to less chance

of cache miss. Third, integer-only arithmetic itself is efficient,
especially on integer-only hardware.

In this section, we describe quantization method and how
computation is carried out with integer-only arithmetic.
CIELAB color space is a 3-dimensional color space where the
same distance between any pair of points in the space corre-
sponds to the same amount of visually perceived change. A
point in the color space is represented as a vector of three
real-valued elements: [𝑙∗, 𝑎∗, 𝑏∗]𝑇 , where 𝑙∗ is for the light-
ness and both 𝑎∗ and 𝑏∗ are for the color information. The
range of each component is: 𝑙∗ ∈ [0, 100], 𝑎∗ ∈ [−128, 127]
and 𝑏∗ ∈ [−128, 127].

We adopt the following quantization scheme:

𝑙 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒_𝑡𝑜_𝑢8(𝑙∗ ∗ 2𝑛) (4)

𝑎 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒_𝑡𝑜_𝑢8((𝑎∗ + 128) ∗ 2𝑛) (5)
𝑏 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒_𝑡𝑜_𝑢8((𝑏∗ + 128) ∗ 2𝑛) (6)

where 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒_𝑡𝑜_𝑢8 is a function that clips a value into
[0, 255] and drops decimal places so the value can be repre-
sented with an 8-bit unsigned integer. While high𝑛 truncates
high value into the maximum value (i.e. 255), low 𝑛 cannot
represent decimal places precisely. We set 𝑛 = 1 in the rest of
the paper because it is observed to have a negligible impact
on accuracy.
By applying quantization, the elements of the centroid 𝑘

and pixel 𝑖 , [𝑥𝑘 , 𝑦𝑘 , 𝑙𝑘 , 𝑎𝑘 , 𝑏𝑘 ]𝑇 and [𝑥𝑖 , 𝑦𝑖 , 𝑙𝑖 , 𝑎𝑖 , 𝑏𝑖 ]𝑇 , are rep-
resented with integers. To keep this property, in the centroid
update phases, each centroid moves to rounded integers of
its center of mass.

A distance value is also represented with 16-bit unsigned
integers instead of 32-bit floating-point numbers. While the
conventional SLIC uses euclidean distance, when it comes to
integer-only arithmetic, it is inefficient because it requires
wider integers to store intermediate values. Computing eu-
clidean distance involves multiplication of two 16-bit inte-
gers, a result of which should be represented with a 32-bit
integer.
Due to the fact, we use manhattan distance to measure a

distance between a centroid and a point, which is defined
as the sum of absolute differences between elements of the
two vectors. Not only does it keeps variable size same during
all computation, it is also computationally more efficient
because only addition, subtraction and conditional move are
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Figure 3. An illustration of vectorized cluster assignment
with integer-only arithmetic. 𝑑𝑖 𝑗 , the minimum distance of
pixel at (𝑖, 𝑗), is updated to distance to each centroid 𝐶𝑘 =

{𝑥𝑘 , 𝑦𝑘 , 𝑙𝑘 , 𝑎𝑘 , 𝑏𝑘 } given it has less value. 𝑃𝑢,𝑣 denotes a spatial
distance at (𝑢, 𝑣) from the centroid. Row subsampling is
applied so that only a subset of rows is processed.

involved, comparing to euclidean distance where multiplica-
tions and wide variables are required.
We define the color distance term 𝐷𝑐

𝑖𝑘
and the spatial

distance term 𝐷𝑠
𝑖𝑘
between the point 𝑖 and the centroid 𝑘 as

follows:

𝐷𝑐
𝑖𝑘

= |𝑙𝑖 − 𝑙𝑘 | + |𝑎𝑖 − 𝑎𝑘 | + |𝑏𝑖 − 𝑏𝑘 | (7)

𝐷𝑠
𝑖𝑘

= ⌊
𝑚

𝑆
( |𝑥𝑖 − 𝑥𝑘 | + |𝑦𝑖 − 𝑦𝑘 |)⌉ ∗ 2𝑛 (8)

𝐷𝑠 is multiplied by 2𝑛 in order to fit the scale to that of
quantized color. The distance metric 𝐷𝑖𝑘 is a sum of those
two distance terms.

𝐷𝑖𝑘 = 𝐷𝑐
𝑖𝑘
+ 𝐷𝑠

𝑖𝑘
(9)

Since 𝐷𝑠
𝑖𝑘
is a function of 𝑥𝑖 −𝑥𝑘 and 𝑦𝑖 −𝑦𝑘 whose values

are constrained to the integer range of [−𝑆, 𝑆], the spatial
distance term can be cached in advance in a 2D array 𝑃 of size
(2𝑆 + 1) × (2𝑆 + 1). By caching 𝐷𝑠 into 𝑃 , computing spatial
distance, where floating-point multiplication and division
are involved, can be replaced by one memory access.
The actual formulations used in our implementation are

as follows:

𝑃𝑢𝑣 = ⌊
𝑚

𝑆
( |𝑢 | + |𝑣 |)⌉ ∗ 2𝑛 (10)

𝐷𝑖𝑘 = 𝐷𝑐
𝑖𝑘
+ 𝑃𝑢𝑣 (11)

where 𝑢 = 𝑦𝑖 − 𝑦𝑘 and 𝑣 = 𝑥𝑖 − 𝑥𝑘 .

(a) pixel subsampling (b) row subsampling

Figure 4. An illustration of two subsampling strategies. The
shaded regions are discarded array elements by sampling. A
cache line or a SIMD vector from (a) contains both sampled
elements and discarded elements, which results in inefficient
cache use and no decrease in the number of SIMD vector
instructions. (b) does not have this drawback because a row
is a long contiguous chunk of memory.

𝑃𝑢𝑣 has a range of [0, 2𝑚 ∗ 2𝑛] and 𝐷𝑐 has a range of
[0, 765]. A distance fits in 16-bit integer unless𝑚 ≥ 16384,
as an unsigned 16-bit integer has the maximum value 216 − 1.
Thus, there are no need to clip the value of 𝑃 in practice
considering m is actually set to a small value such as 10 or
20.
Figure 3 depicts the cluster assignment procedure using

integer-only arithmetic. we maintain a minimum distance
𝑑𝑖 𝑗 to its cluster during an iteration. For each cluster 𝑘 , 𝑑𝑖 𝑗
is updated into distance to the centroid if it has less value.
For further optimization, we employ SIMD vectorization and
row subsampling, which will be described in Section 4.2.

We represent cluster labels with unsigned 16-bit integers
as well. Reserving 0𝑥𝐹𝐹𝐹𝐹 as the sentinel value indicating
Unassigned, at most 65535 clusters can be allocated in our
method.

4.2 Row subsampling
Subsampling is an effective way to speed up clustering by
reducing memory access. For example, the running time of
K-means clustering to large dataset is shown to be reduced
by orders of magnitudes by sampling [25].

The running time of both cluster assignment and centroid
update can be reduced by the subsampling as only a portion
of pixels can be used for scattering cluster assignment and
gathering pixels for computing new centroid position.

The natural way to sample pixels from an image is to treat
each pixel as an independent unit and draw 𝑝 proportion of
pixels from the image. For example, when 𝑝 = 0.5, one could
randomly accept each pixel with probability 𝑝 = 0.5. Other-
wise, one could divide pixels in checkerboard pattern and
alternate between white and black, as depicted in Figure 4a.
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This method will be called Pixel subsampling in that each
pixel represents a unit of sampling.
While running time is shown to be reduced by pixel sub-

sampling [11], it should not be strictly inversely proportional
to the the number of pixels. That is, performance gain is
much less than 2× when 𝑝 = 0.5. The main disadvantage of
the method is that not all elements in memory cache line
are utilized, resulting in enlarging the proportion of time
taken by cache miss. Even worse is SIMD implementation
of this method, because a vector packs contiguous multiple
elements, vector instruction cannot be skipped out unless
all elements in a vector are rejected by sampling.

To address this, Row subsampling is proposed in this paper.
A sample is drawn from a set of image rows and then only
the rows from the sample are used for cluster assignment
and centroid update. Because a row of an image is a long
contiguous line of memory, processing a row subsample
results in less cache miss and is easy to be optimized with
SIMD.

Specifically, in each iteration 𝑖 , rows whose index 𝑦 satis-
fies 𝑦 mod Stride ≡ 𝑖 are sampled. For instance, if the value
of Stride is 2, it first samples even-numbered rows and then
odd-numbered rows in the alternate fashion. Centroid up-
dates are performed in the sameway as the standard k-means
clustering, without weighted update or gradient step.

Algorithm 1: FastSlic
Input:𝑊 × 𝐻 quantized CIELAB Image

𝐼𝑖 𝑗 = {𝑙𝑖 𝑗 , 𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 }, initial 𝐾 centroids
𝐶𝑘 = {𝑥𝑘 , 𝑦𝑘 , 𝑙𝑘 , 𝑎𝑘 , 𝑏𝑘 }, grid size 𝑆 ,
compactness𝑚, color quantization scale 𝑛,
max iteration 𝑁 , Subsampling stride Stride

Output: superpixel assignment 𝐴𝑖 𝑗

1 repeat
/* The assignment procedure is further

described in Algorithm 2 */
2 Assign clusters and store the assignment into 𝐴𝑖 𝑗

with 𝑂𝑓 𝑓 𝑠𝑒𝑡 and 𝑆𝑡𝑟𝑖𝑑𝑒 .
3 Update the centroids from assignment 𝐴𝑖 𝑗 in

parallel.
4 Offset ← (Offset + 1) mod Stride ;
5 until iterated 𝑁 times;
6 Assign clusters and store into 𝐴𝑖 𝑗 with 𝑆𝑡𝑟𝑖𝑑𝑒 = 1.
7 Enforce connectivity of 𝐴𝑖 𝑗 .

4.3 Parallelization
Multi-core parallelization is able to be applied to the four
parts. CIELAB conversion and quantization can be paral-
lelized on per-pixel basis. Similarly, the centroid update is
parallelizable by accumulating 5-dimensional pixel vectors
for each cluster in each thread and gathering from threads.

Figure 5. The tiling scheme for parallel cluster assignment.
The shaded regions represent tiles of {𝑇2𝑖+1,2𝑗+1}. The re-
gions of clusters 𝐶𝑘 , 𝐶𝑙 , 𝐶𝑚 , drawn from different tiles of
{𝑇2𝑖+1,2𝑗+1}, do not overlap. However, 𝐶𝑘 and 𝐶𝑛 in the same
tile have an overlapping region. From these observations,
we can treat a tile as a unit to distribute to multiple threads.

In the next sections, we describe how to perform cluster
assignment and connectivity enforcement in parallel.

4.3.1 Parallel cluster assignment
We parallelize the outermost loop, where (2𝑆+1)×(2𝑆+1) re-
gion are scanned for each cluster. Due to overlapping regions
to which multiple clusters have access, naive parallelization
results in race condition bringing about a nondeterministic
behavior.
In this section, we present a tiling scheme for avoiding

the race condition. The key observation is that assignment
of cluster 𝑘 and cluster 𝑙 can run in parallel if two regions of
interest do not overlap, that is, |𝑦𝑘 −𝑦𝑙 | > 2𝑆 ∨ |𝑥𝑘 −𝑥𝑙 | > 2𝑆 .
We define two clusters are independent if their regions do
not overlap.
We place the image on a 2D uniform grid where the size

of a tile is 2𝑆 × 2𝑆 . Tile𝑇𝑖, 𝑗 has row index 𝑖 and column index
𝑗 . A tile includes clusters whose centroid is within its area.
Two tiles are independent if and only if all pairs of clusters
drawn from each tile are independent.

The following inequalities hold because of the size of tile.

∀𝐶𝑘 ∈𝑇𝑖,𝑗∀𝐶𝑙 ∈𝑇𝑖,𝑗+2 |𝑥𝑘 − 𝑥𝑙 | > 2𝑆 (12)

∀𝐶𝑘 ∈𝑇𝑖,𝑗∀𝐶𝑙 ∈𝑇𝑖+2, 𝑗 |𝑦𝑘 − 𝑦𝑙 | > 2𝑆 (13)
We can deduce from these that tiles with odd-numbered

row index and those with even-numbered row index in a spe-
cific grid column are independent one another. That is, each
tile of {𝑇2𝑖,𝑥0 } or {𝑇2𝑖+1,𝑥0 } are independent one another for
all 𝑖 in column 𝑥0. The same applies to {𝑇𝑦0,2𝑗 } and {𝑇𝑦0,2𝑗+1}
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for all 𝑗 in row 𝑦0. By putting these together, each tile of
any tile set of {𝑇2𝑖,2𝑗 }, {𝑇2𝑖,2𝑗+1}, {𝑇2𝑖+1,2𝑗 } and {𝑇2𝑖+1,2𝑗+1},
is independent one another for all 𝑖 and 𝑗 , as illustrated in
Section 4.3.1.

Algorithm 2: Parallel cluster assignment
Input: 𝐾 centroids 𝐶𝑘 = {𝑥𝑘 , 𝑦𝑘 }, grid size 𝑆 , image

width𝑊 , image height 𝐻 , 𝐾 centroids
𝐶𝑘 = {𝑥𝑘 , 𝑦𝑘 , 𝑙𝑘 , 𝑎𝑘 , 𝑏𝑘 }, grid size 𝑆 ,
compactness𝑚, color quantization scale 𝑛,
Subsampling offset Offset, Subsampling stride
Stride

Output: distance map 𝑑𝑖 𝑗 , superpixel assignment 𝐴𝑖 𝑗

1 Initialize 𝑑𝑖 𝑗 with 0𝑥𝐹𝐹𝐹𝐹 ;
2 Initialize 𝐴𝑖 𝑗 with 0𝑥𝐹𝐹𝐹𝐹 ;
/* Prepare spatial distance cache 𝑃 */

3 Initialize 𝑃 as u16 array of size (2𝑆 + 1) × (2𝑆 + 1) ;
4 for 𝑢 = −𝑆 to 𝑆 do
5 for 𝑣 = −𝑆 to 𝑆 do

6 𝑃𝑢𝑣 ← ⌊
𝑚

𝑆
( |𝑢 | + |𝑣 |)⌉ ∗ 2𝑛

7 Initialize 𝑇 as an 2D array with size ⌈
𝐻

2𝑆
⌉ × ⌈

𝑊

2𝑆
⌉ ;

8 for 𝐶𝑘 = {𝑥𝑘 , 𝑦𝑘 } do

9 𝑖 ← ⌊
𝑦

2𝑆
⌋, 𝑗 ← ⌊

𝑥

2𝑆
⌋ ;

10 𝑇𝑖, 𝑗 ← 𝑇𝑖, 𝑗 ∪ {𝐶𝑘 } ;
11 for𝑊 ∈ {{𝑇2𝑖,2𝑗 }, {𝑇2𝑖,2𝑗+1}, {𝑇2𝑖+1,2𝑗 }, {𝑇2𝑖+1,2𝑗+1}}

do
12 Split𝑊 into𝑊𝑡 for each thread 𝑡 ;
13 Create new threads and run the following loop in

each thread 𝑡 ;
14 for 𝑇𝑐 ∈𝑊𝑡 do
15 for 𝐶𝑘 = {𝑥𝑘 , 𝑦𝑘 , 𝑙𝑘 , 𝑎𝑘 , 𝑏𝑘 } ∈ 𝑇𝑐 do
16 for 𝑢 = −𝑆 to 𝑆 do
17 𝑖 ← 𝑦𝑘 + 𝑢 ;
18 if 𝑖 mod Stride . Offset then
19 continue
20 for 𝑣 = −𝑆 to 𝑆 do
21 𝑗 ← 𝑥𝑘 + 𝑣 ;
22 𝑑𝑠 ← |𝑙𝑖 𝑗 −𝑙𝑘 | + |𝑎𝑖 𝑗 −𝑎𝑘 | + |𝑏𝑖 𝑗 −𝑏𝑘 |

;
23 𝑑 ← 𝑃𝑢𝑣 + 𝑑𝑠 ;
24 if 𝑑𝑖 𝑗 > 𝑑 then
25 𝑑𝑖 𝑗 ← 𝑑 ;
26 𝐴𝑖 𝑗 ← 𝑘 ;

27 Join threads ;

Algorithm 2 shows how to distribute clusters ontomultiple
threads. We first choose one of the four tile sets. Then tiles of
the set are evenly distributed to multiple threads. Each thread
performs cluster assignment against the clusters included in
its own tiles. By this way, cluster assignment can be safely
parallelized without race condition.

4.3.2 Parallel connectivity enforcement
As the main procedure gets faster by parallelization, a serial
connectivity enforcement eventually becomes the bottleneck
of the entire process. We use the parallel CCL procedure
proposed in [10] with several alterations for connectivity
enforcement.

There are a few differences in our implementation from the
original one. We alter the original algorithm to treat adjacent
pixels as neighbors only if they have the same cluster number.
Plus, we use 4-connectivity instead of 8-connectivity for the
sake of performance, in which only north, east, south and
west pixel of each pixel are considered adjacent.

5 Experiment
In this section, we compare the accuracy and running time
of our approach against those of the state-of-the-art meth-
ods: SLIC [3], SNIC [4], preSLIC (Preemptive SLIC) [21],
CWS (Compact Watershed) [21], SEEDS [29], USEQ [12] and
USEAQ [13], on the BSDS500 dataset [19]. We also carry out
experiments with several values of 𝑆𝑡𝑟𝑖𝑑𝑒 and see its effect
on accuracy and running time. Then, we further examine
how much each optimization technique presented in this
paper contributes to its speed gain.

For the experiments, we used Ryzen 2600x, ARM Cortex-
A72 and GTX 1070Ti for experiments on x64, ARM and GPU.
The running time in benchmark include both colorspace
conversion time and post-processing time. We use 𝑁 of 10,
𝑆𝑡𝑟𝑖𝑑𝑒 of 3 and𝑚 of 10, unless specified otherwise.

5.1 Evaluation of accuracy
The accuracy of the superpixel methods is evaluated in the
three metrics: Boundary Recall (BR), Undersegmentation
error(USE), and Achievable Segmentation Accuracy (ASA).

Boundary recall Boundary recall is a metric to measure
boundary adherence. The higher boundary recall is, the more
superpixels are adherent to boundaries. It is defined as the
ratio of true positive boundary pixels to ground truth bound-
ary pixels [24]. A ground-truth boundary pixel is considered
positive if at least one boundary pixel on superpixels is within
𝑟 pixels of it. We choose 𝑟 = 1 for our experiments.

𝐵𝑅(𝐵𝐺 , 𝐵𝑆 ) =
∑

𝑝∈𝐵𝐺 [
∨

𝑞∈𝐵𝑆 𝑚𝑎𝑥 ( |𝑥𝑝 − 𝑥𝑞 |, |𝑦𝑝 − 𝑦𝑞 |) ≤ 𝑟 ]
|𝐵𝐺 |

(14)
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where 𝐵𝐺 is a set of pixels on ground-truth boundaries,
𝐵𝑆 is a set of pixels on superpixel boundaries and [·] is the
indicator function.

Undersegmentation error Undersegmentation error is a
metric to measure a fraction of leakage of superpixel around
ground truth boundary. There is a variation in its definition
in literature. We define it as follows, as proposed in [20],
because it does not suffer from error overestimation on large
superpixels having a small overlap with ground truth.

𝑈𝑆𝐸 (𝐺, 𝑆) =
1
𝑁

∑
𝑖

∑
𝑆𝑘∩𝐺𝑖≠∅

𝑚𝑖𝑛( |𝑆𝑘 ∩𝐺𝑖 |, |𝑆𝑘 −𝐺𝑖 |) (15)

where 𝐺𝑖 is a ground-truth segmentation, 𝑆𝑘 is a super-
pixel segmentation and 𝑁 is the total number of pixels in
image.

Achievable segmentation accuracy Achievable segmen-
tation accuracy is the maximum accuracy achievable when
classification of each superpixel is perfectly correct, as de-
fined in [16]:

𝐴𝑆𝐴(𝐺, 𝑆) =
∑

𝑘𝑚𝑎𝑥𝑖 |𝑆𝑘 ∩𝐺𝑖 |∑
𝑖 𝐺𝑖

(16)

Figure 6a, 6c and 6e plot accuracy of each superpixel
method assessed by BR, USE and ASA with respect to the
number of superpixels (K). From these results, it appears ac-
curacy of FastSLIC is comparable to that of the conventional
SLIC, or even better. It implies quantization and subsampling
with 𝑆𝑡𝑟𝑖𝑑𝑒 of 3, described in Section 4, have little effect on
accuracy.

5.2 Comparison of computational efficiency of
superpixel methods

In this section, we show running time comparison of the
superpixel methods. For fair comparison, the experiments
to be performed are separated into serial runs and parallel
runs. In the parallel runs, 6 threads and 4 threads are used
on x64 and ARM respectively.
Figure 7 depicts the benchmark results of the superpixel

methods on a single core and multiple cores. Only the meth-
ods supporting multi-core are shown in parallel runs. We
observe our method significantly outperforms other methods
running on cpus in terms of latency.

Table 1 shows that it is 9.85 times faster than the original
SLIC implementation when executed in serial and even 32.8
times faster when multiple cores used, on the x64 processor.
We observe it is 9.48 times faster in serial and 17.35 times
faster in parallel on the ARM processor. The running time
of our method is comparable to that of gSLIC which takes
advantage of GPU.

Method x64 (ms) ARM (ms)
SLIC 394 1840
SEEDS 311 1503
USEAQ 224 928
USEQ 95 345
preSLIC 85 443
CWS 82 454

FastSLIC 40 194
FastSLIC (2 cores) 23 124
FastSLIC (3 cores) 19 106
FastSLIC (4 cores) 16 107
FastSLIC (6 cores) 12

gSLICr 12
Table 1. Running times of fast superpixel methods for 1280×
720 image on the x64 and the ARM processor. The last line
describes the running time of gSLICr, a GPU implementation
of SLIC.

x64 ARM
Stride Time (ms) Speed up Time (ms) Speed up

1 76.1 1.00 581.9 1.00
3 38.9 1.96 305.1 1.91
5 32.1 2.37 246.3 2.36
8 28.8 2.64 209.1 2.78
10 27.4 2.78 197.1 2.95

Table 2. Running time with respect to 𝑆𝑡𝑟𝑖𝑑𝑒 for 1280 × 720
at 𝐾 of 1500.

5.3 Analysis of effect of subsampling
Figure 6b, 6d and 6f demonstrates how each value of 𝑆𝑡𝑟𝑖𝑑𝑒
affects the accuracy of outputs. We observe the results gen-
erated with 𝑆𝑡𝑟𝑖𝑑𝑒 of 3 show almost the same accuracy as
those with 𝑆𝑡𝑟𝑖𝑑𝑒 of 1. As Stride gets higher than 3, accuracy
starts to degrade in all three metrics.

5.4 Analysis of running time improvement
FastSLIC owes its computational efficiency the four tech-
niques proposed in this paper: distance caching (DC), 16-
bit distance quantization and integer-only-arithmetic (DQ),
SIMD and row subsampling (RSS). Table 3 shows the effects
of each of these components on running time improvement,
tested on a single core.

The baseline is SLIC incorporating the color quantization
and connectivity enforcement procedure described in Sec-
tion 4. DC was effective on x64 making 18% faster than the
baseline while there was little improvement on ARM. In con-
trast, DQ resulted in a 24% performance gain while it had
little impact on x64. SIMD and RSS were the most effective
ways to reduce running time. SIMD gave speed up of 104%
and 53% and RSS gave additional performance gain of 96%
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Figure 6. The first column corresponds to accuracy of superpixel algorithms evaluated in the three metrics: (a) boundary
recall (higher is better). (c) under-segmentation error (lower is better). (e) achievable segmentation accuracy (higher is better).
the second column demonstrates accuracy loss incurred by Stride of 1, 3, 5, 8 and 10.
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Figure 7. Benchmark on latency with respect to image size at 𝐾 of 1500.

x64 ARM
Method Time (ms) Speed up Time (ms) Speed up
baseline 185.2 1.00 1146.2 1.00
DC 156.3 1.18 1112.5 1.03
DC + DQ 155.9 1.19 894.6 1.24
DC + DQ + SIMD 76.1 2.43 581.9 1.91
DC + DQ + SIMD + RSS 38.9 4.76 305.1 3.65

Table 3. Running time of FastSLIC applying different optimizations for 1280 × 720 image on the x64 and the ARM processor at
𝐾 of 1500. RSS is performed with Stride of 3.
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x64 ARM
# Threads Time (ms) Speed up Time (ms) Speed up

1 40.4 1.00 194.0 1.00
2 22.5 1.80 124.2 1.56
3 19.0 2.13 106.2 1.83
4 15.9 2.54 107.3 1.81
5 12.6 3.21
6 12.3 3.28

Table 4. Running time with respect to the number of threads
for 1280 × 720 at 𝐾 of 1500.

and 91% on x64 and ARM, respectively. Overall, FastSLIC
ran 4.76 times faster on x64 and 3.65 times faster on ARM
than its baseline.
As shown in Table 4, we gained speed up of 3.28 and

1.83 when 6 cores and 3 cores are used on x64 and ARM
respectively. The speed up did not grow further when more
than 3 threads are used on ARM. We conjecture it is due to
saturated memory bandwidth.

6 Conclusion
Superpixel extraction is widely used in pre-processing phases
of computer vision tasks such as object detection and video
tracking. SLIC is one of the most commonly used method
due to its simplicity and high quality superpixels. Neverthe-
less, it is not capable of processing at real-time large-sized
images without resorting to a powerful-but-expensive GPU.
We present a fast SLIC-variant algorithm that is an order of
magnitude faster than SLIC and other state-of-art algorithms.
We show color quantization, integer distance metric, SIMD
and row subsampling are effective techniques for reducing
computational cost. Also, clusters are distributed on per-
tile basis to multiple threads for multi-core parallelization.
Benchmark shows that our method is 10 times faster than
SLIC in serial and is 33 times faster when parallelized on
6 cores. FastSLIC does not degrade accuracy at the cost of
speed, achieving the same or better quality comparing to
SLIC.
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Figure 8. Visual comparison of superpixel algorithms. Image is segmented into superpixels of size 1024 (left), 256 (center) and
64 (right).
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