-
Notifications
You must be signed in to change notification settings - Fork 1
/
ClassifierThirdStage.py
1018 lines (883 loc) · 39 KB
/
ClassifierThirdStage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
__author__ = 'Anochjhn Iruthayam'
import h5py, pybrain, re
from pybrain.datasets import ClassificationDataSet
import BatSpecies as BS
import numpy as np
from pybrain.supervised.trainers import BackpropTrainer
from pybrain.structure import SoftmaxLayer
from pybrain.tools.shortcuts import buildNetwork
from pybrain.utilities import percentError
import random, os
from pybrain.tools.customxml.networkwriter import NetworkWriter #To save a network
from pybrain.tools.customxml.networkreader import NetworkReader #To load a network
# Classifier with the HDF5 interface
def toTime(timePixel):
imageLength = 5000.0
return (1000.0/imageLength)*timePixel
def tokFreq(freqPixel):
imageWidth = 1025.0
return (250.0/imageWidth)*(imageWidth-freqPixel)
class Classifier():
def __init__(self):
self.pathEventList = []
self.TrainingSetEventList = []
self.HDFFile = h5py
self.Bat = BS.BatSpecies()
self.ConfusionMatrix = 0
def saveEventPath(self, name):
self.pathEventList.append(name)
def initClasissifer(self, filename):
print "Initilazing HDF5 database"
self.HDFFile = h5py.File(filename)
self.HDFFile.visit(self.saveEventPath)
def RemoveTrainingDataFromTestData(self, TrainingSetEventList, TestDataEventList):
EventPath = []
for TestSetPath in TestDataEventList:
FlagAccepted = 0
for TrainingSetPath in TrainingSetEventList:
if TrainingSetPath != TestSetPath:
FlagAccepted = 1
else:
FlagAccepted = 0
break
if FlagAccepted == 1:
EventPath.append(TestSetPath)
return EventPath
def pixelCount(self, img):
height, length = img.shape
pixelValue = 0
count = 0
for x in range(0, length):
for y in range(0, height):
if img[y][x] > 1:
pixelValue += img[y][x]
count += 1
averagePixel = float(pixelValue)/float(count)
return averagePixel
def getHDFInformation(self, paths):
pathcorr = []
pathcorrImg = []
BatID = []
for path in paths:
temp = re.split('/', path)
index = 7
length = 8
if len(temp) == length and temp[index] == "FeatureDataEvent":
data = self.HDFFile[path]
#Exclude certain classes/groups 4 because not enough data,
#if data.attrs["BatID"] != 0 and data.attrs["BatID"] != 4 and data.attrs["BatID"] != 7 and data.attrs["BatID"] != 8 and data.attrs["BatID"] != 9 and data.attrs["BatID"] != 10 and data.attrs["BatID"] != 11 and data.attrs["BatID"] != 12 and data.attrs["BatID"] != 13 and data.attrs["BatID"] != 14 and data.attrs["BatID"] != 15:
# We are NOT including 0: not classified, 4: too low data, 13: too low data, 15: too low data, 7: opther species
if data.attrs["BatID"] != 0 and data.attrs["BatID"] != 4 and data.attrs["BatID"] != 13 and data.attrs["BatID"] != 15 and data.attrs["BatID"] != 7:
BatID.append(data.attrs["BatID"])
pathcorr.append(path)
imgPath = temp[0] + "/" + temp[1] + "/" + temp[2] + "/" + temp[3] + "/" + temp[4] + "/" + temp[5] + "/" + temp[6] + "/" + "ArrayImgEvent"
pathcorrImg.append(imgPath)
return pathcorr, BatID, pathcorrImg
## Scans for all available events
## Returns: path where the event data is, target result, path where the event image data is
def getBatEventHDFInformation(self, paths):
pathcorr = []
pathcorrImg = []
for path in paths:
temp = re.split('/', path)
index = 7
length = 8
if len(temp) == length and temp[index] == "FeatureDataEvent":
# get data from path
data = self.HDFFile[path]
# as long as it is not other spices, noise and something else;then add, include all events
if data.attrs["BatID"] != 0 and data.attrs["BatID"] != 7 and data.attrs["BatID"] != 8 and data.attrs["BatID"] != 9:
pathcorr.append(path)
imgPath = temp[0] + "/" + temp[1] + "/" + temp[2] + "/" + temp[3] + "/" + temp[4] + "/" + temp[5] + "/" + temp[6] + "/" + "ArrayImgEvent"
pathcorrImg.append(imgPath)
return pathcorr, pathcorrImg
def getSpecificHDFInformation(self, paths, BatID):
pathcorr = []
pathcorrImg = []
for path in paths:
temp = re.split('/', path)
index = 7
length = 8
if len(temp) == length and temp[index] == "FeatureDataEvent":
#get data from path
data = self.HDFFile[path]
if data.attrs["BatID"] == BatID:
pathcorr.append(path)
imgPath = temp[0] + "/" + temp[1] + "/" + temp[2] + "/" + temp[3] + "/" + temp[4] + "/" + temp[5] + "/" + temp[6] + "/" + "ArrayImgEvent"
pathcorrImg.append(imgPath)
return pathcorr, pathcorrImg
## Scans for all available events
## Returns: path where the event data is, target result, path where the event image data is
def getNoiseEventHDFInformation(self, paths):
pathcorr = []
pathcorrImg = []
BatID = []
for path in paths:
temp = re.split('/', path)
index = 7
length = 8
if len(temp) == length and temp[index] == "FeatureDataEvent":
# get data from path
data = self.HDFFile[path]
# as long as it is not other spices, noise and something else;then add, include all events
if data.attrs["BatID"] == 8:
#BatID.append(data.attrs["BatID"])
pathcorr.append(path)
imgPath = temp[0] + "/" + temp[1] + "/" + temp[2] + "/" + temp[3] + "/" + temp[4] + "/" + temp[5] + "/" + temp[6] + "/" + "ArrayImgEvent"
pathcorrImg.append(imgPath)
return pathcorr, pathcorrImg
## Scans for all available events and noises
## Returns: path where the event data is, target result, path where the event image data is
def getAllEventHDFInformation(self, paths):
pathcorr = []
pathcorrImg = []
BatID = []
for path in paths:
temp = re.split('/', path)
index = 7
length = 8
if len(temp) == length and temp[index] == "FeatureDataEvent":
# get data from path
data = self.HDFFile[path]
# as long as it is not other spice and something else;then add. Include all events and noise
if data.attrs["BatID"] != 7 and data.attrs["BatID"] != 4 and data.attrs["BatID"] != 13 and data.attrs["BatID"] != 15:# and data.attrs["BatID"] != 9 and data.attrs["BatID"] != 8:
BatID.append(data.attrs["BatID"])
pathcorr.append(path)
imgPath = temp[0] + "/" + temp[1] + "/" + temp[2] + "/" + temp[3] + "/" + temp[4] + "/" + temp[5] + "/" + temp[6] + "/" + "ArrayImgEvent"
pathcorrImg.append(imgPath)
return pathcorr, BatID, pathcorrImg
def getHDFInfoFromIDList(self, paths, BatIDList):
pathcorr = []
pathcorrImg = []
BatID = []
for path in paths:
temp = re.split('/', path)
index = 7
length = 8
if len(temp) == length and temp[index] == "FeatureDataEvent":
# get data from path
data = self.HDFFile[path]
# as long as it is not other spice and something else;then add. Include all events and noise
for ID in BatIDList:
if ID == data.attrs["BatID"]:
BatID.append(data.attrs["BatID"])
pathcorr.append(path)
imgPath = temp[0] + "/" + temp[1] + "/" + temp[2] + "/" + temp[3] + "/" + temp[4] + "/" + temp[5] + "/" + temp[6] + "/" + "ArrayImgEvent"
pathcorrImg.append(imgPath)
return pathcorr, BatID, pathcorrImg
## Scans for all available events
## Returns: path where the event data is, target result, path where the event image data is
def getHDFInformationToAddPixelInfo(self, paths):
pathcorrImg = []
BatID = []
for path in paths:
temp = re.split('/', path)
index = 7
length = 8
if len(temp) == length and temp[index] == "FeatureDataEvent":
# get data from path
#data = self.HDFFile[path]
# as long as it is not other spices, noise and something else;then add, include all events
#BatID.append(data.attrs["BatID"])
imgPath = temp[0] + "/" + temp[1] + "/" + temp[2] + "/" + temp[3] + "/" + temp[4] + "/" + temp[5] + "/" + temp[6] + "/" + "ArrayImgEvent"
pathcorrImg.append(imgPath)
return pathcorrImg
def getHDFSSC(self, paths):
pathcorr = []
pathcorrImg = []
BatID = []
SSC_VALUE = 1
for path in paths:
temp = re.split('/', path)
index = 7
length = 8
if len(temp) == length and temp[index] == "FeatureDataEvent":
# get data from path
data = self.HDFFile[path]
# If the first stage classisfier results is 1, then continue. Also exclude some bat calls
if 4 != data.attrs["BatID"] and 7 != data.attrs["BatID"] and 13 != data.attrs["BatID"] and 15 != data.attrs["BatID"]:
if SSC_VALUE == data.attrs["SSC"]:
BatID.append(data.attrs["BatID"])
pathcorr.append(path)
imgPath = temp[0] + "/" + temp[1] + "/" + temp[2] + "/" + temp[3] + "/" + temp[4] + "/" + temp[5] + "/" + temp[6] + "/" + "ArrayImgEvent"
pathcorrImg.append(imgPath)
return pathcorr, BatID, pathcorrImg
#Output: returns list random picked test data (features)
def getDistrubedTestDataRUNVERSION(self):
minFreq = []
maxFreq = []
Durantion = []
fl1 = []
fl2 = []
fl3 = []
fl4 = []
fl5 = []
fl6 = []
fl7 = []
fl8 = []
fl9 = []
fl10 = []
target = []
pixelAverage = []
path = []
#EventPath = self.RemoveTrainingDataFromTestData(self.TrainingSetEventList, self.pathEventList)
pathcorr, BatID, pathcorrImg = self.getHDFSSC(self.pathEventList)
EventSize = len(pathcorr)
currentEvent = 0
#if EventSize < amount:
# amount = EventSize-1
for i in range(0, EventSize):
data = self.HDFFile[pathcorr[i]]
img = self.HDFFile[pathcorrImg[i]]
pixelAverage.append(img.attrs["AveragePixelValue"])
minFreq.append(tokFreq(data[0]))
maxFreq.append(tokFreq(data[1]))
Durantion.append(toTime(abs(data[2]-data[3])))
pix0 = data[4]
pix1 = data[5]
pix2 = data[6]
pix3 = data[7]
pix4 = data[8]
pix5 = data[9]
pix6 = data[10]
pix7 = data[11]
pix8 = data[12]
pix9 = data[13]
pix10 = data[14]
path.append(pathcorr[i])
# Calculate the difference from previous point
fl1.append(toTime(pix1)-toTime(pix0))
fl2.append(toTime(pix2)-toTime(pix1))
fl3.append(toTime(pix3)-toTime(pix2))
fl4.append(toTime(pix4)-toTime(pix3))
fl5.append(toTime(pix5)-toTime(pix4))
fl6.append(toTime(pix6)-toTime(pix5))
fl7.append(toTime(pix7)-toTime(pix6))
fl8.append(toTime(pix8)-toTime(pix7))
fl9.append(toTime(pix9)-toTime(pix8))
fl10.append(toTime(pix10)-toTime(pix9))
target.append(BatID[i])
return minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage, target, path
def getTestData(self, amount):
minFreq = []
maxFreq = []
Durantion = []
fl1 = []
fl2 = []
fl3 = []
fl4 = []
fl5 = []
fl6 = []
fl7 = []
fl8 = []
fl9 = []
fl10 = []
target = []
pathcorr, BatID, pathcorrImg = self.getHDFInformation(self.pathEventList)
EventSize = len(BatID)
currentEvent = 0
randomPathIterator = random.sample(xrange(0,EventSize-1), amount)
for i in randomPathIterator:
data = self.HDFFile[pathcorr[i]]
minFreq.append(tokFreq(data[0]))
maxFreq.append(tokFreq(data[1]))
Durantion.append(toTime(abs(data[2]-data[3])))
pix0 = data[4]
pix1 = data[5]
pix2 = data[6]
pix3 = data[7]
pix4 = data[8]
pix5 = data[9]
pix6 = data[10]
pix7 = data[11]
pix8 = data[12]
pix9 = data[13]
pix10 = data[14]
# Calculate the difference from previous point
fl1.append(toTime(pix1)-toTime(pix0))
fl2.append(toTime(pix2)-toTime(pix1))
fl3.append(toTime(pix3)-toTime(pix2))
fl4.append(toTime(pix4)-toTime(pix3))
fl5.append(toTime(pix5)-toTime(pix4))
fl6.append(toTime(pix6)-toTime(pix5))
fl7.append(toTime(pix7)-toTime(pix6))
fl8.append(toTime(pix8)-toTime(pix7))
fl9.append(toTime(pix9)-toTime(pix8))
fl10.append(toTime(pix10)-toTime(pix9))
target.append(BatID[i])
return minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, target
#Output: returns list random picked test data (features)
def getDistrubedTestData(self, amount, BatIDToAdd):
BatIDToAdd.append(8)
#BatIDToAdd.append(9)
minFreq = []
maxFreq = []
Durantion = []
fl1 = []
fl2 = []
fl3 = []
fl4 = []
fl5 = []
fl6 = []
fl7 = []
fl8 = []
fl9 = []
fl10 = []
target = []
pixelAverage = []
EventPath = self.RemoveTrainingDataFromTestData(self.TrainingSetEventList, self.pathEventList)
pathcorr, BatID, pathcorrImg = self.getHDFInfoFromIDList(EventPath, BatIDToAdd)
EventSize = len(BatID)
currentEvent = 0
if EventSize < amount:
amount = EventSize-1
randomPathIterator = random.sample(xrange(0,EventSize-1), amount)
for i in randomPathIterator:
data = self.HDFFile[pathcorr[i]]
img = self.HDFFile[pathcorrImg[i]]
pixelAverage.append(img.attrs["AveragePixelValue"])
minFreq.append(tokFreq(data[0]))
maxFreq.append(tokFreq(data[1]))
Durantion.append(toTime(abs(data[2]-data[3])))
pix0 = data[4]
pix1 = data[5]
pix2 = data[6]
pix3 = data[7]
pix4 = data[8]
pix5 = data[9]
pix6 = data[10]
pix7 = data[11]
pix8 = data[12]
pix9 = data[13]
pix10 = data[14]
# Calculate the difference from previous point
fl1.append(toTime(pix1)-toTime(pix0))
fl2.append(toTime(pix2)-toTime(pix1))
fl3.append(toTime(pix3)-toTime(pix2))
fl4.append(toTime(pix4)-toTime(pix3))
fl5.append(toTime(pix5)-toTime(pix4))
fl6.append(toTime(pix6)-toTime(pix5))
fl7.append(toTime(pix7)-toTime(pix6))
fl8.append(toTime(pix8)-toTime(pix7))
fl9.append(toTime(pix9)-toTime(pix8))
fl10.append(toTime(pix10)-toTime(pix9))
target.append(BatID[i])
return minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage, target
#Adds all the needed species in one
def getTrainingSpeciesDistributedData(self, BatIDToAdd, AmountPerSpecies):
minFreq = []
maxFreq = []
Durantion = []
fl1 = []
fl2 = []
fl3 = []
fl4 = []
fl5 = []
fl6 = []
fl7 = []
fl8 = []
fl9 = []
fl10 = []
pixelAverage = []
target = []
for BatSpecies in BatIDToAdd:
print "BatID: " + str(BatSpecies)
minFreqTemp, maxFreqTemp, DurantionTemp, fl1Temp, fl2Temp, fl3Temp, fl4Temp, fl5Temp, fl6Temp, fl7Temp, fl8Temp, fl9Temp, fl10Temp, pixelAverageTemp = self.getTrainingDistributedData(AmountPerSpecies, BatSpecies)
#minFreqTemp, maxFreqTemp, DurantionTemp, fl1Temp, fl2Temp, fl3Temp, fl4Temp, fl5Temp, fl6Temp, fl7Temp, fl8Temp, fl9Temp, fl10Temp= self.getTrainingSequenceData(AmountPerSpecies, BatSpecies)
for i in range(0,len(minFreqTemp)):
minFreq.append(minFreqTemp[i])
maxFreq.append(maxFreqTemp[i])
Durantion.append(DurantionTemp[i])
fl1.append(fl1Temp[i])
fl2.append(fl2Temp[i])
fl3.append(fl3Temp[i])
fl4.append(fl4Temp[i])
fl5.append(fl5Temp[i])
fl6.append(fl6Temp[i])
fl7.append(fl7Temp[i])
fl8.append(fl8Temp[i])
fl9.append(fl9Temp[i])
fl10.append(fl10Temp[i])
pixelAverage.append(pixelAverageTemp[i])
target.append(BatSpecies)
return minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage, target
#Output: returns list of traning feautures in a random order
def getTrainingDistributedData(self, amount, BatID):
minFreq = []
maxFreq = []
Durantion = []
fl1 = []
fl2 = []
fl3 = []
fl4 = []
fl5 = []
fl6 = []
fl7 = []
fl8 = []
fl9 = []
fl10 = []
pixelAverage = []
pathcorr, pathcorrImg = self.getSpecificHDFInformation(self.pathEventList, BatID)
EventSize = len(pathcorr)
randomPathIterator = random.sample(xrange(0,EventSize-1), amount)
currentEvent = 0
for i in randomPathIterator:
data = self.HDFFile[pathcorr[i]]
img = self.HDFFile[pathcorrImg[i]]
pixelAverage.append(img.attrs["AveragePixelValue"])
self.TrainingSetEventList.append(pathcorr[i])
minFreq.append(tokFreq(data[0]))
maxFreq.append(tokFreq(data[1]))
Durantion.append(toTime(abs(data[2]-data[3])))
pix0 = data[4]
pix1 = data[5]
pix2 = data[6]
pix3 = data[7]
pix4 = data[8]
pix5 = data[9]
pix6 = data[10]
pix7 = data[11]
pix8 = data[12]
pix9 = data[13]
pix10 = data[14]
# Calculate the difference from previous point
fl1.append(toTime(pix1)-toTime(pix0))
fl2.append(toTime(pix2)-toTime(pix1))
fl3.append(toTime(pix3)-toTime(pix2))
fl4.append(toTime(pix4)-toTime(pix3))
fl5.append(toTime(pix5)-toTime(pix4))
fl6.append(toTime(pix6)-toTime(pix5))
fl7.append(toTime(pix7)-toTime(pix6))
fl8.append(toTime(pix8)-toTime(pix7))
fl9.append(toTime(pix9)-toTime(pix8))
fl10.append(toTime(pix10)-toTime(pix9))
return minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage
#Output: returns list of traning feautures in a sequence
def getTrainingSequenceData(self, amount, BatID):
minFreq = []
maxFreq = []
Durantion = []
fl1 = []
fl2 = []
fl3 = []
fl4 = []
fl5 = []
fl6 = []
fl7 = []
fl8 = []
fl9 = []
fl10 = []
pathcorr, pathcorrImg = self.getSpecificHDFInformation(self.pathEventList, BatID)
EventSize = len(pathcorr)
#randomPathIterator = random.sample(xrange(0,EventSize-1), amount)
#currentEvent = 0
for i in range(0,amount):
data = self.HDFFile[pathcorr[i]]
minFreq.append(tokFreq(data[0]))
maxFreq.append(tokFreq(data[1]))
Durantion.append(toTime(abs(data[2]-data[3])))
pix0 = data[4]
pix1 = data[5]
pix2 = data[6]
pix3 = data[7]
pix4 = data[8]
pix5 = data[9]
pix6 = data[10]
pix7 = data[11]
pix8 = data[12]
pix9 = data[13]
pix10 = data[14]
# Calculate the difference from previous point
fl1.append(toTime(pix1)-toTime(pix0))
fl2.append(toTime(pix2)-toTime(pix1))
fl3.append(toTime(pix3)-toTime(pix2))
fl4.append(toTime(pix4)-toTime(pix3))
fl5.append(toTime(pix5)-toTime(pix4))
fl6.append(toTime(pix6)-toTime(pix5))
fl7.append(toTime(pix7)-toTime(pix6))
fl8.append(toTime(pix8)-toTime(pix7))
fl9.append(toTime(pix9)-toTime(pix8))
fl10.append(toTime(pix10)-toTime(pix9))
return minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10
def getDistributedData(self, amount, ID):
minFreq = []
maxFreq = []
Durantion = []
fl1 = []
fl2 = []
fl3 = []
fl4 = []
fl5 = []
fl6 = []
fl7 = []
fl8 = []
fl9 = []
fl10 = []
pixelAverage = []
pathcorr, pathcorrImg = self.getSpecificHDFInformation(self.pathEventList, ID)
EventSize = len(pathcorr)
currentEvent = 0
randomPathIterator = random.sample(xrange(0,EventSize-1), amount)
for i in randomPathIterator:
data = self.HDFFile[pathcorr[i]]
img = self.HDFFile[pathcorrImg[i]]
pixelAverage.append(img.attrs["AveragePixelValue"])
self.TrainingSetEventList.append(pathcorr[i])
minFreq.append(tokFreq(data[0]))
maxFreq.append(tokFreq(data[1]))
Durantion.append(toTime(abs(data[2]-data[3])))
pix0 = data[4]
pix1 = data[5]
pix2 = data[6]
pix3 = data[7]
pix4 = data[8]
pix5 = data[9]
pix6 = data[10]
pix7 = data[11]
pix8 = data[12]
pix9 = data[13]
pix10 = data[14]
# Calculate the difference from previous point
fl1.append(toTime(pix1)-toTime(pix0))
fl2.append(toTime(pix2)-toTime(pix1))
fl3.append(toTime(pix3)-toTime(pix2))
fl4.append(toTime(pix4)-toTime(pix3))
fl5.append(toTime(pix5)-toTime(pix4))
fl6.append(toTime(pix6)-toTime(pix5))
fl7.append(toTime(pix7)-toTime(pix6))
fl8.append(toTime(pix8)-toTime(pix7))
fl9.append(toTime(pix9)-toTime(pix8))
fl10.append(toTime(pix10)-toTime(pix9))
return minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage
def convertIDAll(self, ID):
if ID == 1:
newID = 0
elif ID == 2:
newID = 1
elif ID == 3:
newID = 2
elif ID == 5:
newID = 3
elif ID == 6:
newID = 4
elif ID == 10:
newID = 5
elif ID == 11:
newID = 6
elif ID == 12:
newID = 7
elif ID == 14:
newID = 8
#this is for noise
elif ID == 8:
newID = 9
#this is for something else
elif ID == 9:
newID = 10
else:
print "Could not assign the ID " + str(ID) + " to newID"
return newID
def convertIDSingle(self, ID):
if ID == 1:
newID = 0
elif ID == 2:
newID = 1
elif ID == 3:
newID = 2
elif ID == 5:
newID = 3
elif ID == 6:
newID = 4
#this is for noise
elif ID == 8:
newID = 5
#this is for something else. Classify multiple calls as something else
elif ID == 10:
newID = 6
elif ID == 11:
newID = 6
elif ID == 12:
newID = 6
elif ID == 14:
newID = 6
elif ID == 9:
newID = 6
else:
print "Could not assign the ID " + str(ID) + " to newID"
return newID
#assign 0 to noise, 1 to single call, 2 to multiple calls
def convertIDlow(self, ID):
if ID == 1:
newID = 1
elif ID == 2:
newID = 1
elif ID == 3:
newID = 1
elif ID == 5:
newID = 1
elif ID == 6:
newID = 1
elif ID == 10:
newID = 2
elif ID == 11:
newID = 2
elif ID == 12:
newID = 2
elif ID == 14:
newID = 2
#this is for noise
elif ID == 8:
newID = 0
#this is for something else
elif ID == 9:
newID = 10
else:
print "Could not assign the ID " + str(ID) + " to newID"
return newID
def convertID2(self, ID):
if ID == 1:
newID = 0
elif ID == 2:
newID = 1
elif ID == 3:
newID = 2
elif ID == 5:
newID = 3
elif ID == 6:
newID = 4
#this is for noise
elif ID == 8:
newID = 5
elif ID == 9:
newID = 6
else:
print "Could not assign the ID " + str(ID) + " to newID"
return newID
def pixelFix(self):
pathcorrImg = self.getHDFInformationToAddPixelInfo(self.pathEventList)
TotalEvents = len(pathcorrImg)
for i in range (0, TotalEvents):
print "Calculating Average pixel for event " + str(i) + " out of " + str(TotalEvents)
img = self.HDFFile[pathcorrImg[i]]
averagePixelValue = self.pixelCount(img)
img.attrs["AveragePixelValue"] = averagePixelValue
def printy(self, s):
from scipy import mean
if ((s._num_updates * s.batch_size < 100
and s._num_updates % (20 / s.batch_size) == 0)
or s._num_updates % (100 / s.batch_size) == 0):
print s._num_updates * s.batch_size, #s.bestParameters,
s.provider.nextSamples(4)
print mean(s.provider.currentLosses(s.bestParameters))
#s.provider.nextSamples(1)
def runClassifier(self):
out = []
true = []
#SingleBatIDToAdd = [1, 2, 3, 5, 6] # for single
Correct = 0
print "Loading Network.."
net = NetworkReader.readFrom("ThirdStageClassifier.xml")
print "Loading feature data with SSC = 1 (Single call type)"
minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage, target, path = self.getDistrubedTestDataRUNVERSION()
SAMPLE_SIZE = len(minFreq)
for i in range(0, SAMPLE_SIZE):
ClassifierOutput= net.activate([minFreq[i], maxFreq[i], Durantion[i], fl1[i], fl2[i], fl3[i], fl4[i], fl5[i], fl6[i], fl7[i], fl8[i], fl9[i], fl10[i], pixelAverage[i]])
ClassifierOutputID = np.argmax(ClassifierOutput)
currentTarget = self.convertIDSingle(target[i])
out.append(ClassifierOutputID)
true.append(currentTarget)
#MAPPING FROM BATID TO TSC value:
TSC_value = ClassifierOutputID
# Metadata Setup, get path and write: TSC = value
ds = self.HDFFile[path[i]]
ds.attrs["TSC"] = TSC_value
self.HDFFile.flush()
self.HDFFile.close()
return self.CorrectRatio(out, true)
#self.ConfusionMatrix = self.CorrectRatio(out, true)
#return self.ConfusionMatrix
def goClassifer(self, iteration, learningrate, momentum, toFile):
self.TrainingSetEventList[:] = []
print "Iteration Count: " + str(iteration)
#Set up Classicication Data, 4 input, output is a one dim. and 2 possible outcome or two possible classes
trndata = ClassificationDataSet(14, nb_classes=7)
tstdata = ClassificationDataSet(14, nb_classes=7)
SAMPLE_SIZE = 100
AmountPerSpecies = 100
SingleBatIDToAdd = [1, 2, 3, 5, 6] # for single
MultiBatIDToAdd = [10, 11, 12, 14]# for multi
AddBatIDToAdd = [1, 2, 3, 5, 6]
AddSingleMulti = [1, 2, 3, 5, 6,10, 11, 12, 14]
TraningDataAmount = 5000
print "Adding Bat Single Species Events"
minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage, target = self.getTrainingSpeciesDistributedData(SingleBatIDToAdd, AmountPerSpecies)
SAMPLE_SIZE = len(minFreq)
for i in range (0, SAMPLE_SIZE):
#trndata.addSample([ minFreq[i], maxFreq[i], Durantion[i], fl1[i], fl2[i], fl3[i], fl4[i], fl5[i], fl6[i], fl7[i], fl8[i], fl9[i], fl10[i], pixelAverage[i] ], [1]) #self.convertID(target[i])
trndata.addSample([ minFreq[i], maxFreq[i], Durantion[i], fl1[i], fl2[i], fl3[i], fl4[i], fl5[i], fl6[i], fl7[i], fl8[i], fl9[i], fl10[i], pixelAverage[i] ], [self.convertIDSingle(target[i])]) #self.convertID(target[i])
#print "Adding Bat Multi Species Events"
#minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage, target = self.getTrainingSpeciesDistributedData(MultiBatIDToAdd, AmountPerSpecies)
#SAMPLE_SIZE = len(minFreq)
#for i in range (0, SAMPLE_SIZE):
# trndata.addSample([ minFreq[i], maxFreq[i], Durantion[i], fl1[i], fl2[i], fl3[i], fl4[i], fl5[i], fl6[i], fl7[i], fl8[i], fl9[i], fl10[i], pixelAverage[i] ], [2])
print "Adding noise events"
NoiseID = 8
minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage = self.getDistributedData(AmountPerSpecies, NoiseID)
SAMPLE_SIZE = len(minFreq)
for i in range (0, SAMPLE_SIZE):
trndata.addSample([ minFreq[i], maxFreq[i], Durantion[i], fl1[i], fl2[i], fl3[i], fl4[i], fl5[i], fl6[i], fl7[i], fl8[i], fl9[i], fl10[i], pixelAverage[i] ], [self.convertIDSingle(NoiseID)]) #self.convertID(NoiseID)
print "Adding something else events"
SomethingElseID = 9
SEAmount = 20
minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage = self.getDistributedData(SEAmount, SomethingElseID)
SAMPLE_SIZE = len(minFreq)
for i in range (0, SAMPLE_SIZE):
trndata.addSample([ minFreq[i], maxFreq[i], Durantion[i], fl1[i], fl2[i], fl3[i], fl4[i], fl5[i], fl6[i], fl7[i], fl8[i], fl9[i], fl10[i], pixelAverage[i] ], [self.convertIDSingle(SomethingElseID)])
# Try to put all multievent in the something else event
print "Adding something else events"
SomethingElseID = 9
BatIDToAdd2 = [10, 11, 12, 14]
minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage, target = self.getTrainingSpeciesDistributedData(BatIDToAdd2, SEAmount)
SAMPLE_SIZE = len(minFreq)
for i in range (0, SAMPLE_SIZE):
trndata.addSample([ minFreq[i], maxFreq[i], Durantion[i], fl1[i], fl2[i], fl3[i], fl4[i], fl5[i], fl6[i], fl7[i], fl8[i], fl9[i], fl10[i], pixelAverage[i] ], [self.convertIDSingle(SomethingElseID)])
print "Adding test data"
minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage, target = self.getDistrubedTestData(TraningDataAmount, SingleBatIDToAdd)
maxSize = len(minFreq)
for i in range (0, maxSize):
tstdata.addSample([minFreq[i], maxFreq[i], Durantion[i], fl1[i], fl2[i], fl3[i], fl4[i], fl5[i], fl6[i], fl7[i], fl8[i], fl9[i], fl10[i], pixelAverage[i]], [ self.convertIDSingle (target[i]) ])
trndata._convertToOneOfMany( )
tstdata._convertToOneOfMany( )
print "Number of training patterns: ", len(trndata)
print "Input and output dimensions: ", trndata.indim, trndata.outdim
print "Learning Rate: " + str(learningrate)
print "Momentum: " + str(momentum)
#print "First sample (input, target, class):"
#print trndata['input'][0], trndata['target'][0], trndata['class'][0]
#print "200th sample (input, target, class):"
#print trndata['input'][100], trndata['target'][100], trndata['class'][100]
#set up the Feed Forward Network
HiddenNeurons = 10
#learningrate = 0.01
#momentum = 0.1
weightdecay = 0
#from datainterface import ModuleWrapper, ClassificationModuleWrapper
#from sgd import SGD
net = buildNetwork(trndata.indim, HiddenNeurons, trndata.outdim, bias=True, outclass=SoftmaxLayer)
#p0 = net.params.copy()
#provider = ClassificationModuleWrapper(trndata, net, shuffling=False)
#algo = SGD(provider, net.params.copy(), callback=self.printy, learning_rate=learningrate, momentum=momentum)
#print '\n' * 2
#print 'SGD-CE'
#algo.run(1000)
trainer = BackpropTrainer(net, dataset=trndata, momentum=momentum, learningrate=learningrate, verbose=False, weightdecay=weightdecay)
#raw_input("Press Enter to continue...")
print "Training data"
if toFile:
#filename = "InputN" + str(trndata.indim) + "HiddenN" + str(HiddenNeurons) + "OutputN" + str(trndata.outdim) + "Momentum"+ str(momentum) + "LearningRate" + str(learningrate) + "Weightdecay" + str(weightdecay)
root = "/home/anoch/Dropbox/SDU/10 Semester/MSc Project/Data Results/Master/BinarySpeciesTestMSE/"
filename = "ClassifierSpeciesTest_" + str(iteration) +"_MSE_LR_"+str(learningrate) + "_M_"+str(momentum)
folderName = root + "ClassifierSpeciesTest_MSE_LR_"+str(learningrate) + "_M_"+str(momentum)
if not os.path.exists(folderName):
os.makedirs(folderName)
f = open(folderName + "/"+ filename + ".txt", 'w')
value = "Added Bat Species: " + str(AddBatIDToAdd) + "\n"
f.write(value)
value = "Number of bat patterns: " + str(len(trndata)) + "\n"
f.write(value)
value = "Number of noise patterns: " + str(AmountPerSpecies) + "\n"
f.write(value)
value = "Number of patterns per species: " + str(AmountPerSpecies) + "\n"
f.write(value)
value = "Number of test data: " + str(TraningDataAmount) + "\n"
f.write(value)
value = "Input, Hidden and output dimensions: " + str(trndata.indim) + ", " + str(HiddenNeurons) + ", " + str(trndata.outdim) + "\n"
f.write(value)
value = "Momentum: " + str(momentum) + "\n"
f.write(value)
value = "Learning Rate: " + str(learningrate) + "\n"
f.write(value)
value = "Weight Decay: " + str(weightdecay) + "\n"
f.write(value)
f.write("Input Activation function: Linear function\n")
f.write("Hidden Activation function: Sigmoid function\n")
f.write("Output Activation function: Softmax function\n")
maxEpoch = 100
for i in range(0,maxEpoch):
# Train one epoch
trainer.trainEpochs(10)
averageError = trainer.testOnData(dataset=tstdata, verbose=False)
#averageCEE = self.CrossEntropyErrorAveraged(net, tstdata)
#print "Average Cross Entropy Error: " + str(averageCEE)
#print "Mean Square Error: " + str(averageError)
#"""procentError(out, true) return percentage of mismatch between out and target values (lists and arrays accepted) error= ((out - true)/true)*100"""
trnresult = percentError(trainer.testOnClassData(), trndata['class'])
tstresult = percentError(trainer.testOnClassData(dataset=tstdata), tstdata['class'])
print("epoch: %4d" % trainer.totalepochs," train error: %5.2f%%" % trnresult," test error: %5.2f%%" % tstresult)
if tstresult < 27.0:
raw_input("Press Enter to continue...")
break
if toFile:
dataString = str(trainer.totalepochs) + ", " + str(averageError) + ", " + str(trnresult) + ", " + str(tstresult) + "\n"
f.write(dataString)
NetworkWriter.writeToFile(net, "ThirdStageClassifier.xml")
if toFile:
import numpy as np
f.close()
ConfusionMatrix, BatTarget = self.CorrectRatio(trainer.testOnClassData(dataset=tstdata), tstdata['class'])
filename = filename+ "_CR"
result_file = open(folderName + "/"+ filename + ".txt", 'w')
result_file.write("[Species]")
result_file.write(str(BatTarget))
result_file.write(str(ConfusionMatrix))
np.savetxt(folderName + "/"+ filename+".csv", ConfusionMatrix, delimiter=",")
result_file.close()
self.CorrectRatio(trainer.testOnClassData(dataset=tstdata), tstdata['class'])
print "Done training"
#Input: A list of the classifier output and the true target
#Method: calculates the correct ratio based on true and false negative and positive
#Output: A list of result: [TruePostive, FalsePostive, CorrectRatio], [BatCount]
def CorrectRatio(self, out, true):
import numpy as np
#initilaze with zero
ConfusionMatrix = np.zeros((7,7))
#int64 datatype
ConfusionMatrix = np.array(ConfusionMatrix, dtype=np.int64)
TotalTest = len(out)
BatTarget = [0, 0, 0, 0, 0, 0, 0]
for i in true:
BatTarget[i] += 1
out = np.array(out).flatten()
true = np.array(true).flatten()
for i in range(0,TotalTest):
classifierOut = out[i]
targetOut = true[i]
ConfusionMatrix[targetOut][classifierOut] += 1
print BatTarget
print "\n"
print ConfusionMatrix
return ConfusionMatrix
def CrossEntropyErrorAveraged(self, net, dataset):
import math
import numpy as np
outputList = []
targetList = []
#Load dataset
for seq in dataset._provideSequences():
for input, target in seq: