-
Notifications
You must be signed in to change notification settings - Fork 0
/
AvlTree.java
541 lines (457 loc) · 13.1 KB
/
AvlTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
// AvlTree class
//
// CONSTRUCTION: with no initializer
//
// ******************PUBLIC OPERATIONS*********************
// void insert( x ) --> Insert x
// void remove( x ) --> Remove x (unimplemented)
// boolean contains( x ) --> Return true if x is present
// boolean remove( x ) --> Return true if x was present
// Comparable findMin( ) --> Return smallest item
// Comparable findMax( ) --> Return largest item
// boolean isEmpty( ) --> Return true if empty; else false
// void makeEmpty( ) --> Remove all items
// void printTree( ) --> Print tree in sorted order
// ******************ERRORS********************************
// Throws UnderflowException as appropriate
/**
* Implements an AVL tree.
* Note that all "matching" is based on the compareTo method.
* @author Mark Allen Weiss
*/
public class AvlTree<AnyType extends Comparable<? super AnyType>>
{
/**
* Construct the tree.
*/
public AvlTree( )
{
root = null;
}
/**
* Insert into the tree; duplicates are ignored.
* @param x the item to insert.
*/
public void insert( AnyType x )
{
root = insert( x, root );
}
/**
* Remove from the tree. Nothing is done if x is not found.
* @param x the item to remove.
*/
public void remove( AnyType x )
{
root = remove( x, root );
}
/**
* Internal method to remove from a subtree.
* @param x the item to remove.
* @param t the node that roots the subtree.
* @return the new root of the subtree.
*/
private AvlNode<AnyType> remove( AnyType x, AvlNode<AnyType> t )
{
if( t == null )
return t; // Item not found; do nothing
int compareResult = x.compareTo( t.element );
if( compareResult < 0 )
t.left = remove( x, t.left );
else if( compareResult > 0 )
t.right = remove( x, t.right );
else if( t.left != null && t.right != null ) // Two children
{
t.element = findMin( t.right ).element;
t.right = remove( t.element, t.right );
}
else
t = ( t.left != null ) ? t.left : t.right;
return balance( t );
}
/**
* Find the smallest item in the tree.
* @return smallest item or null if empty.
*/
public AnyType findMin( )
{
if( isEmpty( ) )
return null;
return findMin( root ).element;
}
/**
* Find the largest item in the tree.
* @return the largest item of null if empty.
*/
public AnyType findMax( )
{
if( isEmpty( ) )
return null;
return findMax( root ).element;
}
/**
* Find an item in the tree.
* @param x the item to search for.
* @return true if x is found.
*/
public boolean contains( AnyType x )
{
return contains( x, root );
}
/**
* Make the tree logically empty.
*/
public void makeEmpty( )
{
root = null;
}
/**
* Test if the tree is logically empty.
* @return true if empty, false otherwise.
*/
public boolean isEmpty( )
{
return root == null;
}
/**
* Print the tree contents in sorted order.
*/
public void printTree( )
{
if( isEmpty( ) )
System.out.println( "Empty tree" );
else
printTree( root );
}
private static final int ALLOWED_IMBALANCE = 1;
// Assume t is either balanced or within one of being balanced
private AvlNode<AnyType> balance( AvlNode<AnyType> t )
{
if( t == null )
return t;
if( height( t.left ) - height( t.right ) > ALLOWED_IMBALANCE )
if( height( t.left.left ) >= height( t.left.right ) )
t = rotateWithLeftChild( t );
else
t = doubleWithLeftChild( t );
else
if( height( t.right ) - height( t.left ) > ALLOWED_IMBALANCE )
if( height( t.right.right ) >= height( t.right.left ) )
t = rotateWithRightChild( t );
else
t = doubleWithRightChild( t );
t.height = Math.max( height( t.left ), height( t.right ) ) + 1;
return t;
}
public void checkBalance( )
{
checkBalance( root );
}
private int checkBalance( AvlNode<AnyType> t )
{
if( t == null )
return -1;
if( t != null )
{
int hl = checkBalance( t.left );
int hr = checkBalance( t.right );
if( Math.abs( height( t.left ) - height( t.right ) ) > 1 ||
height( t.left ) != hl || height( t.right ) != hr )
System.out.println( "OOPS!!" );
}
return height( t );
}
/**
* Internal method to insert into a subtree.
* @param x the item to insert.
* @param t the node that roots the subtree.
* @return the new root of the subtree.
*/
private AvlNode<AnyType> insert( AnyType x, AvlNode<AnyType> t )
{
if( t == null )
return new AvlNode<AnyType>( x, null, null );
int compareResult = x.compareTo( t.element );
if( compareResult < 0 )
t.left = insert( x, t.left );
else if( compareResult > 0 )
t.right = insert( x, t.right );
else
; // Duplicate; do nothing
return balance( t );
}
/**
* Internal method to find the smallest item in a subtree.
* @param t the node that roots the tree.
* @return node containing the smallest item.
*/
private AvlNode<AnyType> findMin( AvlNode<AnyType> t )
{
if( t == null )
return t;
while( t.left != null )
t = t.left;
return t;
}
/**
* Internal method to find the largest item in a subtree.
* @param t the node that roots the tree.
* @return node containing the largest item.
*/
private AvlNode<AnyType> findMax( AvlNode<AnyType> t )
{
if( t == null )
return t;
while( t.right != null )
t = t.right;
return t;
}
/**
* Internal method to find an item in a subtree.
* @param x is item to search for.
* @param t the node that roots the tree.
* @return true if x is found in subtree.
*/
private boolean contains( AnyType x, AvlNode<AnyType> t )
{
while( t != null )
{
int compareResult = x.compareTo( t.element );
if( compareResult < 0 )
t = t.left;
else if( compareResult > 0 )
t = t.right;
else
return true; // Match
}
return false; // No match
}
/**
* Internal method to print a subtree in sorted order.
* @param t the node that roots the tree.
*/
private void printTree( AvlNode<AnyType> t )
{
if( t != null )
{
printTree( t.left );
System.out.println( t.element );
printTree( t.right );
}
}
/**
* Return the height of node t, or -1, if null.
*/
private int height( AvlNode<AnyType> t )
{
return t == null ? -1 : t.height;
}
/**
* Rotate binary tree node with left child.
* For AVL trees, this is a single rotation for case 1.
* Update heights, then return new root.
*/
private AvlNode<AnyType> rotateWithLeftChild( AvlNode<AnyType> k2 )
{
AvlNode<AnyType> k1 = k2.left;
k2.left = k1.right;
k1.right = k2;
k2.height = Math.max( height( k2.left ), height( k2.right ) ) + 1;
k1.height = Math.max( height( k1.left ), k2.height ) + 1;
return k1;
}
/**
* Rotate binary tree node with right child.
* For AVL trees, this is a single rotation for case 4.
* Update heights, then return new root.
*/
private AvlNode<AnyType> rotateWithRightChild( AvlNode<AnyType> k1 )
{
AvlNode<AnyType> k2 = k1.right;
k1.right = k2.left;
k2.left = k1;
k1.height = Math.max( height( k1.left ), height( k1.right ) ) + 1;
k2.height = Math.max( height( k2.right ), k1.height ) + 1;
return k2;
}
/**
* Double rotate binary tree node: first left child
* with its right child; then node k3 with new left child.
* For AVL trees, this is a double rotation for case 2.
* Update heights, then return new root.
*/
private AvlNode<AnyType> doubleWithLeftChild( AvlNode<AnyType> k3 )
{
k3.left = rotateWithRightChild( k3.left );
return rotateWithLeftChild( k3 );
}
/**
* Double rotate binary tree node: first right child
* with its left child; then node k1 with new right child.
* For AVL trees, this is a double rotation for case 3.
* Update heights, then return new root.
*/
private AvlNode<AnyType> doubleWithRightChild( AvlNode<AnyType> k1 )
{
k1.right = rotateWithLeftChild( k1.right );
return rotateWithRightChild( k1 );
}
private static class AvlNode<AnyType>
{
// Constructors
AvlNode( AnyType theElement )
{
this( theElement, null, null );
}
AvlNode( AnyType theElement, AvlNode<AnyType> lt, AvlNode<AnyType> rt )
{
element = theElement;
left = lt;
right = rt;
height = 0;
}
AnyType element; // The data in the node
AvlNode<AnyType> left; // Left child
AvlNode<AnyType> right; // Right child
int height; // Height
}
/** The tree root. */
private AvlNode<AnyType> root;
// Test program
public int nodeCount()
{
return nodeCount(root);
}
private int nodeCount(AvlNode<AnyType> t)
{
int nodeCounter=0;
if(t.left != null)
{
nodeCounter += nodeCount(t.left);
}
if(t.right != null)
{
nodeCounter += nodeCount(t.right);
}
if((t.left == null) && (t.right == null))
{
return 1; // return 1 leaf
}
else
{
return nodeCounter + 1;
}
}
public int nodeFullCount()
{
return nodeFullCount(root);
}
private int nodeFullCount(AvlNode<AnyType> t)
{
int nodeFullCounter=0;
if(t.left != null)
{
nodeFullCounter += nodeFullCount(t.left);
}
if(t.right != null)
{
nodeFullCounter += nodeFullCount(t.right);
}
if((t.left == null) && (t.right == null))
{
return 0; // return 0 leaves
}
else if((t.left != null) && (t.right != null))
{
return nodeFullCounter + 1;
}
else return nodeFullCounter;
}
public int leafCount()
{
return leafCount(root);
}
private int leafCount(AvlNode<AnyType> t)
{
int leafCounter=0;
if(t.left != null)
{
leafCounter += leafCount(t.left);
}
if(t.right != null)
{
leafCounter += leafCount(t.right);
}
if((t.left == null) && (t.right == null))
{
return leafCounter +1; // return 1 leaf
}
else
{
return leafCounter;
}
}
public void preorder()
{
preorder(root);
}
private void preorder(AvlNode<AnyType> t)
{
System.out.print((t.element) + " "); // print
if(t.left != null)
{
preorder(t.left);
}
if(t.right != null)
{
preorder(t.right);
}
}
public void postorder()
{
postorder(root);
}
private void postorder(AvlNode<AnyType> t)
{
if(t.left != null)
{
postorder(t.left);
}
if(t.right != null)
{
postorder(t.right);
}
System.out.print((t.element) + " "); // print
}
public static void main(String[] args)
{
AvlTree<Integer> testAVL = new AvlTree<Integer>();
testAVL.insert(6);
testAVL.insert(4);
testAVL.insert(7);
testAVL.insert(2);
testAVL.insert(1);
//testAVL.printTree();
long start,stop;
System.out.print("Leaves:\t\t");
start = System.nanoTime();
System.out.print(testAVL.leafCount());
stop = System.nanoTime();
System.out.print("\tRuntime: " + (stop-start) + " nanosec.");
System.out.print("\n");
System.out.print("Nodes:\t\t");
start = System.nanoTime();
System.out.print(testAVL.nodeCount());
stop = System.nanoTime();
System.out.print("\tRuntime: " + (stop-start) + " nanosec.");
System.out.print("\n");
System.out.print("Full nodes:\t");
start = System.nanoTime();
System.out.print(testAVL.nodeFullCount());
stop = System.nanoTime();
System.out.print("\tRuntime: " + (stop-start) + " " + "nanosec.\n");
System.out.print("Preorder traverse:\t");
testAVL.preorder();
System.out.print("\nPostorder traverse:\t");
testAVL.postorder();
}
}