For a reference summary, see the README.md for the sections on Probe types as well as the Probes, Variable builtins, and Function builtins sections in this guide.
This is a work in progress. If something is missing, check the bpftrace source to see if these docs are just out of date. And if you find something, please file an issue or pull request to update these docs. Also, please keep these docs as terse as possible to maintain it's brevity (inspired by the 6-page awk summary from page 106 of v7vol2b.pdf). Leave longer examples and discussion to other files in /docs, the /tools/*_examples.txt files, or blog posts and other articles.
- Terminology
- Usage
- Language
- 1.
{...}
: Action Blocks - 2.
/.../
: Filtering - 3.
//
,/*
: Comments - 4.
->
: C Struct Navigation - 5.
struct
: Struct Declaration - 6.
? :
: ternary operators - 7.
if () {...} else {...}
: if-else statements - 8.
unroll () {...}
: unroll - 9.
++ and --
: increment operators - 10.
[]
: Array access - 11. Integer casts
- 12. Looping constructs
- 13.
return
: Terminate Early - 14.
( , )
: Tuples
- 1.
- Probes
- 1.
kprobe
/kretprobe
: Dynamic Tracing, Kernel-Level - 2.
kprobe
/kretprobe
: Dynamic Tracing, Kernel-Level Arguments - 3.
uprobe
/uretprobe
: Dynamic Tracing, User-Level - 4.
uprobe
/uretprobe
: Dynamic Tracing, User-Level Arguments - 5.
tracepoint
: Static Tracing, Kernel-Level - 6.
tracepoint
: Static Tracing, Kernel-Level Arguments - 7.
usdt
: Static Tracing, User-Level - 8.
usdt
: Static Tracing, User-Level Arguments - 9.
profile
: Timed Sampling Events - 10.
interval
: Timed Output - 11.
software
: Pre-defined Software Events - 12.
hardware
: Pre-defined Hardware Events - 13.
BEGIN
/END
: Built-in events - 14.
watchpoint
: Memory watchpoints - 15.
kfunc
/kretfunc
: Kernel Functions Tracing - 16.
kfunc
/kretfunc
: Kernel Functions Tracing Arguments
- 1.
- Variables
- Functions
- 1. Builtins
- 2.
printf()
: Print Formatted - 3.
time()
: Time - 4.
join()
: Join - 5.
str()
: Strings - 6.
ksym()
: Symbol Resolution, Kernel-Level - 7.
usym()
: Symbol Resolution, User-Level - 8.
kaddr()
: Address Resolution, Kernel-Level - 9.
uaddr()
: Address Resolution, User-Level - 10.
reg()
: Registers - 11.
system()
: System - 12.
exit()
: Exit - 13.
cgroupid()
: Resolve cgroup ID - 14.
ntop()
: Convert IP address data to text - 15.
kstack()
: Stack Traces, Kernel - 16.
ustack()
: Stack Traces, User - 17.
cat()
: Print file content - 18.
signal()
: Send a signal to the current task - 19.
strncmp()
: Compare first n characters of two strings - 20.
override()
: Override return value - 21.
buf()
: Buffers - 22.
sizeof()
: Size of type or expression - 23.
print()
: Print Value - 24.
strftime()
: Formatted timestamp - 25.
path()
: Return full path - 26.
uptr()
: Annotate userspace pointer - 27.
kptr()
: Annotate kernelspace pointer
- Map Functions
- Output
- Advanced Tools
- Errors
Term | Description |
---|---|
BPF | Berkeley Packet Filter: a kernel technology originally developed for optimizing the processing of packet filters (eg, tcpdump expressions) |
eBPF | Enhanced BPF: a kernel technology that extends BPF so that it can execute more generic programs on any events, such as the bpftrace programs listed below. It makes use of the BPF sandboxed virtual machine environment. Also note that eBPF is often just referred to as BPF. |
probe | An instrumentation point in software or hardware, that generates events that can execute bpftrace programs. |
static tracing | Hard-coded instrumentation points in code. Since these are fixed, they may be provided as part of a stable API, and documented. |
dynamic tracing | Also known as dynamic instrumentation, this is a technology that can instrument any software event, such as function calls and returns, by live modification of instruction text. Target software usually does not need special capabilities to support dynamic tracing, other than a symbol table that bpftrace can read. Since this instruments all software text, it is not considered a stable API, and the target functions may not be documented outside of their source code. |
tracepoints | A Linux kernel technology for providing static tracing. |
kprobes | A Linux kernel technology for providing dynamic tracing of kernel functions. |
uprobes | A Linux kernel technology for providing dynamic tracing of user-level functions. |
USDT | User Statically-Defined Tracing: static tracing points for user-level software. Some applications support USDT. |
BPF map | A BPF memory object, which is used by bpftrace to create many higher-level objects. |
BTF | BPF Type Format: the metadata format which encodes the debug info related to BPF program/map. |
Command line usage is summarized by bpftrace without options:
# bpftrace
USAGE:
bpftrace [options] filename
bpftrace [options] -e 'program'
OPTIONS:
-B MODE output buffering mode ('line', 'full', or 'none')
-d debug info dry run
-dd verbose debug info dry run
-b force BTF (BPF type format) processing
-e 'program' execute this program
-h show this help message
-I DIR add the specified DIR to the search path for include files.
--include FILE adds an implicit #include which is read before the source file is preprocessed.
-l [search] list probes
-p PID enable USDT probes on PID
-c 'CMD' run CMD and enable USDT probes on resulting process
-q keep messages quiet
-v verbose messages
-k emit a warning when a bpf helper returns an error (except read functions)
-kk check all bpf helper functions
--version bpftrace version
ENVIRONMENT:
BPFTRACE_STRLEN [default: 64] bytes on BPF stack per str()
BPFTRACE_NO_CPP_DEMANGLE [default: 0] disable C++ symbol demangling
BPFTRACE_MAP_KEYS_MAX [default: 4096] max keys in a map
BPFTRACE_MAX_PROBES [default: 512] max number of probes bpftrace can attach to
BPFTRACE_CACHE_USER_SYMBOLS [default: auto] enable user symbol cache
BPFTRACE_VMLINUX [default: none] vmlinux path used for kernel symbol resolution
BPFTRACE_BTF [default: none] BTF file
EXAMPLES:
bpftrace -l '*sleep*'
list probes containing "sleep"
bpftrace -e 'kprobe:do_nanosleep { printf("PID %d sleeping...\n", pid); }'
trace processes calling sleep
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'
count syscalls by process name
The most basic example of a bpftrace program:
# bpftrace -e 'BEGIN { printf("Hello, World!\n"); }'
Attaching 1 probe...
Hello, World!
^C
The syntax to this program will be explained in the Language section. In this section, we'll cover tool usage.
A program will continue running until Ctrl-C is hit, or an exit()
function is called. When a program
exits, all populated maps are printed: this behavior, and maps, are explained in later sections.
The -e
option allows a program to be specified, and is a way to construct one-liners:
# bpftrace -e 'tracepoint:syscalls:sys_enter_nanosleep { printf("%s is sleeping.\n", comm); }'
Attaching 1 probe...
iscsid is sleeping.
irqbalance is sleeping.
iscsid is sleeping.
iscsid is sleeping.
[...]
This example is printing when processes call the nanosleep syscall. Again, the syntax of the program will be explained in the Language section.
Programs saved as files are often called scripts, and can be executed by specifying their file name.
We'll often use a .bt
file extension, short for bpftrace, but the extension is ignored.
For example, listing the sleepers.bt file using cat -n
(which enumerates the output lines):
# cat -n sleepers.bt
1 tracepoint:syscalls:sys_enter_nanosleep
2 {
3 printf("%s is sleeping.\n", comm);
4 }
Running sleepers.bt:
# bpftrace sleepers.bt
Attaching 1 probe...
iscsid is sleeping.
iscsid is sleeping.
[...]
It can also be made executable to run stand-alone. Start by adding an interpreter line at the top (#!
)
with either the path to your installed bpftrace (/usr/local/bin is the default) or the path to env
(usually just /usr/bin/env
) followed by bpftrace
(so it will find bpftrace in your $PATH
):
1 #!/usr/local/bin/bpftrace
2
3 tracepoint:syscalls:sys_enter_nanosleep
4 {
5 printf("%s is sleeping.\n", comm);
6 }
Then make it executable:
# chmod 755 sleepers.bt
# ./sleepers.bt
Attaching 1 probe...
iscsid is sleeping.
iscsid is sleeping.
[...]
Probes from the tracepoint and kprobe libraries can be listed with -l
.
# bpftrace -l | more
tracepoint:xfs:xfs_attr_list_sf
tracepoint:xfs:xfs_attr_list_sf_all
tracepoint:xfs:xfs_attr_list_leaf
tracepoint:xfs:xfs_attr_list_leaf_end
[...]
# bpftrace -l | wc -l
46260
Other libraries generate probes dynamically, such as uprobe, and require specific ways to determine available probes. See the later Probes sections.
Search terms can be added:
# bpftrace -l '*nanosleep*'
tracepoint:syscalls:sys_enter_clock_nanosleep
tracepoint:syscalls:sys_exit_clock_nanosleep
tracepoint:syscalls:sys_enter_nanosleep
tracepoint:syscalls:sys_exit_nanosleep
kprobe:nanosleep_copyout
kprobe:hrtimer_nanosleep
[...]
The -v
option when listing tracepoints will show their arguments for use from the args builtin. For
example:
# bpftrace -lv tracepoint:syscalls:sys_enter_open
tracepoint:syscalls:sys_enter_open
int __syscall_nr;
const char * filename;
int flags;
umode_t mode;
If BTF is available, it is also possible to list struct/union/emum definitions. For example:
# bpftrace -lv "struct path"
struct path {
struct vfsmount *mnt;
struct dentry *dentry;
};
The -d
option produces debug output, and does not run the program. This is mostly useful for debugging
issues with bpftrace itself. You can also use -dd
to produce a more verbose debug output, which will
also print unoptimized IR.
If you are an end-user of bpftrace, you should not normally need the -d
or -v
options, and you can
skip to the Language section.
# bpftrace -d -e 'tracepoint:syscalls:sys_enter_nanosleep { printf("%s is sleeping.\n", comm); }'
Program
tracepoint:syscalls:sys_enter_nanosleep
call: printf
string: %s is sleeping.\n
builtin: comm
[...]
The output begins with Program
and then an abstract syntax tree (AST) representation of the program.
Continued:
[...]
%printf_t = type { i64, [16 x i8] }
[...]
define i64 @"tracepoint:syscalls:sys_enter_nanosleep"(i8*) local_unnamed_addr section "s_tracepoint:syscalls:sys_enter_nanosleep" {
entry:
%comm = alloca [16 x i8], align 1
%printf_args = alloca %printf_t, align 8
%1 = bitcast %printf_t* %printf_args to i8*
call void @llvm.lifetime.start.p0i8(i64 -1, i8* nonnull %1)
%2 = getelementptr inbounds [16 x i8], [16 x i8]* %comm, i64 0, i64 0
%3 = bitcast %printf_t* %printf_args to i8*
call void @llvm.memset.p0i8.i64(i8* nonnull %3, i8 0, i64 24, i32 8, i1 false)
call void @llvm.lifetime.start.p0i8(i64 -1, i8* nonnull %2)
call void @llvm.memset.p0i8.i64(i8* nonnull %2, i8 0, i64 16, i32 1, i1 false)
%get_comm = call i64 inttoptr (i64 16 to i64 (i8*, i64)*)([16 x i8]* nonnull %comm, i64 16)
%4 = getelementptr inbounds %printf_t, %printf_t* %printf_args, i64 0, i32 1, i64 0
call void @llvm.memcpy.p0i8.p0i8.i64(i8* nonnull %4, i8* nonnull %2, i64 16, i32 1, i1 false)
%pseudo = call i64 @llvm.bpf.pseudo(i64 1, i64 1)
%get_cpu_id = call i64 inttoptr (i64 8 to i64 ()*)()
%perf_event_output = call i64 inttoptr (i64 25 to i64 (i8*, i8*, i64, i8*, i64)*)(i8* %0, i64 %pseudo, i64 %get_cpu_id, %printf_t* nonnull %printf_args, i64 24)
call void @llvm.lifetime.end.p0i8(i64 -1, i8* nonnull %1)
ret i64 0
[...]
This section shows the llvm intermediate representation (IR) assembly, which is then compiled into BPF.
The -v
option prints more information about the program as it is run:
# bpftrace -v -e 'tracepoint:syscalls:sys_enter_nanosleep { printf("%s is sleeping.\n", comm); }'
Attaching 1 probe...
The verifier log:
0: (bf) r6 = r1
1: (b7) r1 = 0
2: (7b) *(u64 *)(r10 -24) = r1
3: (7b) *(u64 *)(r10 -32) = r1
4: (7b) *(u64 *)(r10 -40) = r1
5: (7b) *(u64 *)(r10 -8) = r1
6: (7b) *(u64 *)(r10 -16) = r1
7: (bf) r1 = r10
8: (07) r1 += -16
9: (b7) r2 = 16
10: (85) call bpf_get_current_comm#16
11: (79) r1 = *(u64 *)(r10 -16)
12: (7b) *(u64 *)(r10 -32) = r1
13: (79) r1 = *(u64 *)(r10 -8)
14: (7b) *(u64 *)(r10 -24) = r1
15: (18) r7 = 0xffff9044e65f1000
17: (85) call bpf_get_smp_processor_id#8
18: (bf) r4 = r10
19: (07) r4 += -40
20: (bf) r1 = r6
21: (bf) r2 = r7
22: (bf) r3 = r0
23: (b7) r5 = 24
24: (85) call bpf_perf_event_output#25
25: (b7) r0 = 0
26: (95) exit
processed 26 insns (limit 131072), stack depth 40
Attaching tracepoint:syscalls:sys_enter_nanosleep
Running...
iscsid is sleeping.
iscsid is sleeping.
[...]
This includes The verifier log:
and then the log message from the in-kernel vertifier.
The -I
option can be used to add directories to the list of directories that bpftrace uses to look for
headers. Can be defined multiple times.
# cat program.bt
#include <foo.h>
BEGIN { @ = FOO }
# bpftrace program.bt
definitions.h:1:10: fatal error: 'foo.h' file not found
# /tmp/include
foo.h
# bpftrace -I /tmp/include program.bt
Attaching 1 probe...
The --include
option can be used to include headers by default. Can be defined multiple times. Headers
are included in the order they are defined, and they are included before any other include in the program
being executed.
# bpftrace --include linux/path.h --include linux/dcache.h \
-e 'kprobe:vfs_open { printf("open path: %s\n", str(((path *)arg0)->dentry->d_name.name)); }'
Attaching 1 probe...
open path: .com.google.Chrome.ASsbu2
open path: .com.google.Chrome.gimc10
open path: .com.google.Chrome.R1234s
- The
--version
option prints the bpftrace version:
# bpftrace --version
bpftrace v0.8-90-g585e-dirty
- The
--no-warnings
option disables warnings.
Default: 64
Number of bytes allocated on the BPF stack for the string returned by str().
Make this larger if you wish to read bigger strings with str().
Beware that the BPF stack is small (512 bytes), and that you pay the toll again inside printf() (whilst it composes a perf event output buffer). So in practice you can only grow this to about 200 bytes.
Support for even larger strings is being discussed.
Default: 0
C++ symbol demangling in userspace stack traces is enabled by default.
This feature can be turned off by setting the value of this environment variable to 1
.
Default: 4096
This is the maximum number of keys that can be stored in a map. Increasing the value will consume more memory and increase startup times. There are some cases where you will want to: for example, sampling stack traces, recording timestamps for each page, etc.
Default: 512
This is the maximum number of probes that bpftrace can attach to. Increasing the value will consume more memory, increase startup times and can incur high performance overhead or even freeze or crash the system.
Default: 0 if ASLR is enabled on system and -c
option is not given; otherwise 1
By default, bpftrace caches the results of symbols resolutions only when ASLR (Address Space Layout Randomization) is disabled. This is because the symbol addresses change with each execution with ASLR. However, disabling caching may incur some performance. Set this env variable to 1 to force bpftrace to cache. This is fine if only trace one program execution.
Default: None
This specifies the vmlinux path used for kernel symbol resolution when attaching kprobe to offset. If this value is not given, bpftrace searches vmlinux from pre defined locations. See src/attached_probe.cpp:find_vmlinux() for details.
Default: None
The path to a BTF file. By default, bpftrace searches several locations to find a BTF file. See src/btf.cpp for the details.
Default: 64
Number of pages to allocate per CPU for perf ring buffer. The value must be a power of 2.
If you're getting a lot of dropped events bpftrace may not be processing events in the ring buffer fast enough. It may be useful to bump the value higher so more events can be queued up. The tradeoff is that bpftrace will use more memory.
bpftrace parses header files using libclang, the C interface to Clang. Thus environment variables
affecting the clang toolchain can be used. For example, if header files are included from a non-default
directory, the CPATH
or C_INCLUDE_PATH
environment variables can be set to allow clang to locate the
files. See clang documentation for more information on these environment variables and their usage.
Syntax: probe[,probe,...] /filter/ { action }
A bpftrace program can have multiple action blocks. The filter is optional.
Example:
# bpftrace -e 'kprobe:do_sys_open { printf("opening: %s\n", str(arg1)); }'
Attaching 1 probe...
opening: /proc/cpuinfo
opening: /proc/stat
opening: /proc/diskstats
opening: /proc/stat
opening: /proc/vmstat
[...]
This is a one-liner invocation of bpftrace. The probe is kprobe:do_sys_open
. When that probe "fires"
(the instrumentation event occurred) the action will be executed, which consists of a print()
statement. Explanations of the probe and action are in the sections that follow.
Syntax: /filter/
Filters (also known as predicates) can be added after probe names. The probe still fires, but it will skip the action unless the filter is true.
Examples:
# bpftrace -e 'kprobe:vfs_read /arg2 < 16/ { printf("small read: %d byte buffer\n", arg2); }'
Attaching 1 probe...
small read: 8 byte buffer
small read: 8 byte buffer
small read: 8 byte buffer
small read: 8 byte buffer
small read: 8 byte buffer
small read: 12 byte buffer
^C
# bpftrace -e 'kprobe:vfs_read /comm == "bash"/ { printf("read by %s\n", comm); }'
Attaching 1 probe...
read by bash
read by bash
read by bash
read by bash
^C
Syntax
// single-line comment
/*
* multi-line comment
*/
These can be used in bpftrace scripts to document your code.
tracepoint example:
# bpftrace -e 'tracepoint:syscalls:sys_enter_openat { printf("%s %s\n", comm, str(args->filename)); }'
Attaching 1 probe...
snmpd /proc/diskstats
snmpd /proc/stat
snmpd /proc/vmstat
[...]
This is returning the filename
member from the args
struct, which for tracepoint probes contains the
tracepoint arguments. See the Static Tracing, Kernel-Level
Arguments section for the contents of this struct.
kprobe example:
# cat path.bt
#include <linux/path.h>
#include <linux/dcache.h>
kprobe:vfs_open
{
printf("open path: %s\n", str(((struct path *)arg0)->dentry->d_name.name));
}
# bpftrace path.bt
Attaching 1 probe...
open path: dev
open path: if_inet6
open path: retrans_time_ms
[...]
This uses dynamic tracing of the vfs_open()
kernel function, via the short script path.bt. Some kernel
headers needed to be included to understand the path
and dentry
structs.
Example:
// from fs/namei.c:
struct nameidata {
struct path path;
struct qstr last;
// [...]
};
You can define your own structs when needed. In some cases, kernel structs are not declared in the kernel headers package, and are declared manually in bpftrace tools (or partial structs are: enough to reach the member to dereference).
Examples:
# bpftrace -e 'tracepoint:syscalls:sys_exit_read { @error[args->ret < 0 ? - args->ret : 0] = count(); }'
Attaching 1 probe...
^C
@error[11]: 24
@error[0]: 78
# bpftrace -e 'BEGIN { pid & 1 ? printf("Odd\n") : printf("Even\n"); exit(); }'
Attaching 1 probe...
Odd
Example:
# bpftrace -e 'tracepoint:syscalls:sys_enter_read { @reads = count();
if (args->count > 1024) { @large = count(); } }'
Attaching 1 probe...
^C
@large: 72
@reads: 80
Example:
# bpftrace -e 'kprobe:do_nanosleep { $i = 1; unroll(5) { printf("i: %d\n", $i); $i = $i + 1; } }'
Attaching 1 probe...
i: 1
i: 2
i: 3
i: 4
i: 5
^C
++
and --
can be used to conveniently increment or decrement counters in maps or variables.
Note that maps will be implictly declared and initialized to 0 if not already declared or defined. Scratch variables must be initialized before using these operators.
Example - variable:
bpftrace -e 'BEGIN { $x = 0; $x++; $x++; printf("x: %d\n", $x); }'
Attaching 1 probe...
x: 2
^C
Example - map:
bpftrace -e 'k:vfs_read { @++ }'
Attaching 1 probe...
^C
@: 12807
Example - map with key:
# bpftrace -e 'k:vfs_read { @[probe]++ }'
Attaching 1 probe...
^C
@[kprobe:vfs_read]: 13369
You may access one-dimensional constant arrays with the array access operator []
.
Example:
# bpftrace -e 'struct MyStruct { int y[4]; } uprobe:./testprogs/array_access:test_struct {
$s = (struct MyStruct *) arg0; @x = $s->y[0]; exit(); }'
Attaching 1 probe...
@x: 1
Integers are internally represented as 64 bit signed. If you need another representation, you may cast to the following built in types:
Type | Explanation |
---|---|
uint8 |
unsigned 8 bit integer |
int8 |
signed 8 bit integer |
uint16 |
unsigned 16 bit integer |
int16 |
signed 16 bit integer |
uint32 |
unsigned 32 bit integer |
int32 |
signed 32 bit integer |
uint64 |
unsigned 64 bit integer |
int64 |
signed 64 bit integer |
Example:
# bpftrace -e 'BEGIN { $x = 1<<16; printf("%d %d\n", (uint16)$x, $x); }'
Attaching 1 probe...
0 65536
^C
Experimental
Kernel: 5.3
bpftrace supports C style while loops:
# bpftrace -e 'i:ms:100 { $i = 0; while ($i <= 100) { printf("%d ", $i); $i++} exit(); }'
Loops can be short circuited by using the continue
and break
keywords.
The return
keyword is used to exit the current probe. This differs from
exit()
in that it doesn't exit bpftrace.
N-tuples are supported, where N is any integer greater than 1.
Indexing is supported using the .
operator. Tuples are immutable once created.
Example:
# bpftrace -e 'BEGIN { $t = (1, 2, "string"); printf("%d %s\n", $t.1, $t.2); }'
Attaching 1 probe...
2 string
^C
kprobe
- kernel function startkretprobe
- kernel function returnuprobe
- user-level function starturetprobe
- user-level function returntracepoint
- kernel static tracepointsusdt
- user-level static tracepointsprofile
- timed samplinginterval
- timed outputsoftware
- kernel software eventshardware
- processor-level events
Some probe types allow wildcards to match multiple probes, eg, kprobe:vfs_*
. You may also specify
multiple attach points for an action block using a comma separated list.
Quoted strings (eg. uprobe:"/usr/lib/c++lib.so":foo
) may be used to escape
characters in attach point definitions.
Syntax:
kprobe:function_name[+offset]
kretprobe:function_name
These use kprobes (a Linux kernel capability). kprobe
instruments the beginning of a function's
execution, and kretprobe
instruments the end (its return).
Examples:
# bpftrace -e 'kprobe:do_nanosleep { printf("sleep by %d\n", tid); }'
Attaching 1 probe...
sleep by 1396
sleep by 3669
sleep by 1396
sleep by 27662
sleep by 3669
^C
It's also possible to specify offset within the probed function:
# gdb -q /usr/lib/debug/boot/vmlinux-`uname -r` --ex 'disassemble do_sys_open'
Reading symbols from /usr/lib/debug/boot/vmlinux-5.0.0-32-generic...done.
Dump of assembler code for function do_sys_open:
0xffffffff812b2ed0 <+0>: callq 0xffffffff81c01820 <__fentry__>
0xffffffff812b2ed5 <+5>: push %rbp
0xffffffff812b2ed6 <+6>: mov %rsp,%rbp
0xffffffff812b2ed9 <+9>: push %r15
...
# bpftrace -e 'kprobe:do_sys_open+9 { printf("in here\n"); }'
Attaching 1 probe...
in here
...
The address is being checked using vmlinux (with debug symbols) if it's aligned with instruction boundaries and within the function. If it's not, we fail to add it:
# bpftrace -e 'kprobe:do_sys_open+1 { printf("in here\n"); }'
Attaching 1 probe...
Could not add kprobe into middle of instruction: /usr/lib/debug/boot/vmlinux-5.0.0-32-generic:do_sys_open+1
If bpftrace is compiled with ALLOW_UNSAFE_PROBE
option, you can use --unsafe option to skip the check.
In this case, linux kernel still checks instruction alignment.
The default vmlinux path can be overridden using the environment variable BPFTRACE_VMLINUX
.
Examples in situ: (kprobe) search /tools (kretprobe) /tools
Syntax:
kprobe: arg0, arg1, ..., argN
kretprobe: retval
Arguments can be accessed via these variables names. arg0
is the first argument and can only be
accessed with a kprobe
. retval
is the return value for the instrumented function, and can only be
accessed on kretprobe
.
Examples:
# bpftrace -e 'kprobe:do_sys_open { printf("opening: %s\n", str(arg1)); }'
Attaching 1 probe...
opening: /proc/cpuinfo
opening: /proc/stat
opening: /proc/diskstats
opening: /proc/stat
opening: /proc/vmstat
[...]
# bpftrace -e 'kprobe:do_sys_open { printf("open flags: %d\n", arg2); }'
Attaching 1 probe...
open flags: 557056
open flags: 32768
open flags: 32768
open flags: 32768
[...]
# bpftrace -e 'kretprobe:do_sys_open { printf("returned: %d\n", retval); }'
Attaching 1 probe...
returned: 8
returned: 21
returned: -2
returned: 21
[...]
As an example of struct arguments:
# cat path.bt
#include <linux/path.h>
#include <linux/dcache.h>
kprobe:vfs_open
{
printf("open path: %s\n", str(((struct path *)arg0)->dentry->d_name.name));
}
# bpftrace path.bt
Attaching 1 probe...
open path: dev
open path: if_inet6
open path: retrans_time_ms
[...]
Here arg0 was casted as a (struct path *), since that is the first argument to vfs_open(). The struct support is the same as bcc, and based on available kernel headers. This means that many, but not all, structs will be available, and you may need to manually define some structs.
If the kernel has BTF (BPF Type Format) data, all kernel structs are always available without defining them. For example:
# bpftrace -e 'kprobe:vfs_open { printf("open path: %s\n", \
str(((struct path *)arg0)->dentry->d_name.name)); }'
Attaching 1 probe...
open path: cmdline
open path: interrupts
[...]
Requirements for using BTF:
- Linux 4.18+ with
CONFIG_DEBUG_INFO_BTF=y
- Building requires dwarves with pahole v1.13+
- bpftrace v0.9.3+ with BTF support (built with libbpf v0.0.4+)
See kernel documentation for more information on BTF.
Examples in situ: (kprobe) search /tools (kretprobe) /tools
Syntax:
uprobe:library_name:function_name[+offset]
uprobe:library_name:address
uretprobe:library_name:function_name
These use uprobes (a Linux kernel capability). uprobe
instruments the beginning of a user-level
function's execution, and uretprobe
instruments the end (its return).
To list available uprobes, you can use any program to list the text segment symbols from a binary, such
as objdump
and nm
. For example:
# objdump -tT /bin/bash | grep readline
00000000007003f8 g DO .bss 0000000000000004 Base rl_readline_state
0000000000499e00 g DF .text 00000000000001c5 Base readline_internal_char
00000000004993d0 g DF .text 0000000000000126 Base readline_internal_setup
000000000046d400 g DF .text 000000000000004b Base posix_readline_initialize
000000000049a520 g DF .text 0000000000000081 Base readline
[...]
This has listed various functions containing "readline" from /bin/bash. These can be instrumented using
uprobe
and uretprobe
.
Examples:
# bpftrace -e 'uretprobe:/bin/bash:readline { printf("read a line\n"); }'
Attaching 1 probe...
read a line
read a line
read a line
^C
While tracing, this has caught a few executions of the readline()
function in /bin/bash. This example
is continued in the next section.
It's also possible to specify uprobe with virtual address, like:
# objdump -tT /bin/bash | grep main
...
000000000002ec00 g DF .text 0000000000001868 Base main
...
# bpftrace -e 'uprobe:/bin/bash:0x2ec00 { printf("in here\n"); }'
Attaching 1 probe...
And to specify offset within the probed function:
# objdump -d /bin/bash
...
000000000002ec00 <main@@Base>:
2ec00: f3 0f 1e fa endbr64
2ec04: 41 57 push %r15
2ec06: 41 56 push %r14
2ec08: 41 55 push %r13
...
# bpftrace -e 'uprobe:/bin/bash:main+4 { printf("in here\n"); }'
Attaching 1 probe...
...
The address is being checked if it's aligned with instruction boundaries. If it's not, we fail to add it:
# bpftrace -e 'uprobe:/bin/bash:main+1 { printf("in here\n"); }'
Attaching 1 probe...
Could not add uprobe into middle of instruction: /bin/bash:main+1
If bpftrace is compiled with ALLOW_UNSAFE_PROBE
option, you can use --unsafe option to skip the check:
# bpftrace -e 'uprobe:/bin/bash:main+1 { printf("in here\n"); } --unsafe'
Attaching 1 probe...
Unsafe uprobe in the middle of the instruction: /bin/bash:main+1
Using --unsafe option you can also place uprobes on arbitrary addresses. This might come in handy when the binary is stripped.
$ echo 'int main(){return 0;}' | gcc -xc -o bin -
$ nm bin | grep main
...
0000000000001119 T main
...
$ strip bin
# bpftrace --unsafe -e 'uprobe:bin:0x1119 { printf("main called\n"); }'
Attaching 1 probe...
WARNING: could not determine instruction boundary for uprobe:bin:4377 (binary appears stripped). Misaligned probes can lead to tracee crashes!
Examples in situ: (uprobe) search /tools (uretprobe) /tools
Syntax:
uprobe: arg0, arg1, ..., argN
uretprobe: retval
Arguments can be accessed via these variables names. arg0
is the first argument, and can only be
accessed with a uprobe
. retval
is the return value for the instrumented function, and can only be
accessed on uretprobe
.
Examples:
# bpftrace -e 'uprobe:/bin/bash:readline { printf("arg0: %d\n", arg0); }'
Attaching 1 probe...
arg0: 19755784
arg0: 19755016
arg0: 19755784
^C
What does arg0
of readline()
in /bin/bash contain? I don't know. I'd need to look at the bash source
code to find out what its arguments were.
# bpftrace -e 'uprobe:/lib/x86_64-linux-gnu/libc-2.23.so:fopen { printf("fopen: %s\n", str(arg0)); }'
Attaching 1 probe...
fopen: /proc/filesystems
fopen: /usr/share/locale/locale.alias
fopen: /proc/self/mountinfo
^C
In this case, I know that the first argument of libc fopen()
is the pathname (see the fopen(3) man
page), so I've traced it using a uprobe. Adjust the path to libc to match your system (it may not be
libc-2.23.so). A str()
call is necessary to turn the char * pointer to a string, as explained in a
later section.
# bpftrace -e 'uretprobe:/bin/bash:readline { printf("readline: \"%s\"\n", str(retval)); }'
Attaching 1 probe...
readline: "echo hi"
readline: "ls -l"
readline: "date"
readline: "uname -r"
^C
Back to the bash readline()
example: after checking the source code, I saw that the return value was
the string read. So I can use a uretprobe
and the retval
variable to see the read string.
Examples in situ: (uprobe) search /tools (uretprobe) /tools
Syntax: tracepoint:name
These use tracepoints (a Linux kernel capability).
# bpftrace -e 'tracepoint:block:block_rq_insert { printf("block I/O created by %d\n", tid); }'
Attaching 1 probe...
block I/O created by 28922
block I/O created by 3949
block I/O created by 883
block I/O created by 28941
block I/O created by 28941
block I/O created by 28941
[...]
Examples in situ: search /tools
Example:
# bpftrace -e 'tracepoint:syscalls:sys_enter_openat { printf("%s %s\n", comm, str(args->filename)); }'
Attaching 1 probe...
irqbalance /proc/interrupts
irqbalance /proc/stat
snmpd /proc/diskstats
snmpd /proc/stat
snmpd /proc/vmstat
snmpd /proc/net/dev
[...]
The available members for each tracepoint can be listed from their /format file in /sys. For example:
# cat /sys/kernel/debug/tracing/events/syscalls/sys_enter_open/format
name: sys_enter_openat
ID: 608
format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:int __syscall_nr; offset:8; size:4; signed:1;
field:int dfd; offset:16; size:8; signed:0;
field:const char * filename; offset:24; size:8; signed:0;
field:int flags; offset:32; size:8; signed:0;
field:umode_t mode; offset:40; size:8; signed:0;
print fmt: "dfd: 0x%08lx, filename: 0x%08lx, flags: 0x%08lx, mode: 0x%08lx", ((unsigned long)(REC->dfd)), ((unsigned long)(REC->filename)), ((unsigned long)(REC->flags)), ((unsigned long)(REC->mode))
Apart from the filename
member, we can also print flags
, mode
, and more. After the "common" members
listed first, the members are specific to the tracepoint.
Examples in situ: search /tools
Syntax:
usdt:binary_path:probe_name
usdt:binary_path:[probe_namespace]:probe_name
usdt:library_path:probe_name
usdt:library_path:[probe_namespace]:probe_name
Where probe_namespace
is optional if probe_name
is unique within the binary.
Examples:
# bpftrace -e 'usdt:/root/tick:loop { printf("hi\n"); }'
Attaching 1 probe...
hi
hi
hi
hi
hi
^C
The namespace of the probe is deduced automatically. If the binary /root/tick
contained multiple probes
with the name loop
(e.g. tick:loop
and tock:loop
), no probe would be attached.
This may be solved by manually specifying the namespace or by using a wildcard:
# bpftrace -e 'usdt:/root/tick:loop { printf("hi\n"); }'
ERROR: namespace for usdt:/root/tick:loop not specified, matched 2 probes
INFO: please specify a unique namespace or use '*' to attach to all matched probes
No probes to attach
# bpftrace -e 'usdt:/root/tick:tock:loop { printf("hi\n"); }'
Attaching 1 probe...
hi
hi
^C
# bpftrace -e 'usdt:/root/tick:*:loop { printf("hi\n"); }'
Attaching 2 probes...
hi
hi
hi
hi
^C
bpftrace also supports USDT semaphores. If both your environment and bpftrace
support uprobe refcounts, then USDT semaphores are automatically activated for
all processes upon probe attachment (and --usdt-file-activation
becomes a
noop). You can check if your system supports uprobe refcounts by running:
# bpftrace --info 2>&1 | grep "uprobe refcount"
bcc bpf_attach_uprobe refcount: yes
uprobe refcount (depends on Build:bcc bpf_attach_uprobe refcount): yes
If your system does not support uprobe refcounts, you may activate semaphores by passing in -p $PID
or
--usdt-file-activation
. --usdt-file-activation
looks through /proc
to find processes that
have your probe's binary mapped with executable permissions into their address space and then tries
to attach your probe. Note that file activation occurs only once (during attach time). In other
words, if later during your tracing session a new process with your executable is spawned, your
current tracing session will not activate the new process. Also note that --usdt-file-activation
matches based on file path. This means that if bpftrace runs from the root host, things may not work
as expected if there are processes execve
d from private mount namespaces or bind mounted directories.
One workaround is to run bpftrace inside the appropriate namespaces (ie the container).
Examples:
# bpftrace -e 'usdt:/root/tick:loop { printf("%s: %d\n", str(arg0), arg1); }'
my string: 1
my string: 2
my string: 3
my string: 4
my string: 5
^C
# bpftrace -e 'usdt:/root/tick:loop /arg1 > 2/ { printf("%s: %d\n", str(arg0), arg1); }'
my string: 3
my string: 4
my string: 5
my string: 6
^C
Syntax:
profile:hz:rate
profile:s:rate
profile:ms:rate
profile:us:rate
These operating using perf_events (a Linux kernel facility), which is also used by the perf
command).
Examples:
# bpftrace -e 'profile:hz:99 { @[tid] = count(); }'
Attaching 1 probe...
^C
@[32586]: 98
@[0]: 579
Syntax:
interval:ms:rate
interval:s:rate
interval:us:rate
interval:hz:rate
This fires on one CPU only, and can be used for generating per-interval output.
Example:
# bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @syscalls = count(); }
interval:s:1 { print(@syscalls); clear(@syscalls); }'
Attaching 2 probes...
@syscalls: 1263
@syscalls: 731
@syscalls: 891
@syscalls: 1195
@syscalls: 1154
@syscalls: 1635
@syscalls: 1208
[...]
This prints the rate of syscalls per second.
Examples in situ: search /tools
Syntax:
software:event_name:count
software:event_name:
These are the pre-defined software events provided by the Linux kernel, as commonly traced via the perf utility. They are similar to tracepoints, but there is only about a dozen of these, and they are documented in the perf_event_open(2) man page. The event names are:
cpu-clock
orcpu
task-clock
page-faults
orfaults
context-switches
orcs
cpu-migrations
minor-faults
major-faults
alignment-faults
emulation-faults
dummy
bpf-output
The count is the trigger for the probe, which will fire once for every count events. If the count is not provided, a default is used.
Examples:
# bpftrace -e 'software:faults:100 { @[comm] = count(); }'
Attaching 1 probe...
^C
@[ls]: 1
@[pager]: 2
@[locale]: 2
@[preconv]: 2
@[sh]: 3
@[tbl]: 3
@[bash]: 4
@[groff]: 5
@[grotty]: 7
@[sleep]: 9
@[nroff]: 12
@[troff]: 18
@[man]: 97
This roughly counts who is causing page faults, by sampling the process name for every one in one hundred faults.
Syntax:
hardware:event_name:count
hardware:event_name:
These are the pre-defined hardware events provided by the Linux kernel, as commonly traced by the perf utility. They are implemented using performance monitoring counters (PMCs): hardware resources on the processor. There are about ten of these, and they are documented in the perf_event_open(2) man page. The event names are:
cpu-cycles
orcycles
instructions
cache-references
cache-misses
branch-instructions
orbranches
branch-misses
bus-cycles
frontend-stalls
backend-stalls
ref-cycles
The count is the trigger for the probe, which will fire once for every count events. If the count is not provided, a default is used.
Examples:
bpftrace -e 'hardware:cache-misses:1000000 { @[pid] = count(); }'
That would fire once for every 1000000 cache misses. This usually indicates the last level cache (LLC).
Syntax:
BEGIN
END
These are special built-in events provided by the bpftrace runtime. BEGIN
is triggered before all other
probes are attached. END
is triggered after all other probes are detached.
Examples in situ: (BEGIN) search /tools (END) search /tools
WARNING: this feature is experimental and may be subject to interface changes. Memory watchpoints are also architecture dependant
Syntax:
watchpoint::hex_address:length:mode
These are memory watchpoints provided by the kernel. Whenever a memory address is written to (w
), read
from (r
), or executed (x
), the kernel can generate an event. If you want to add watchpoint for
an userspace process, a pid (-p
) or a command (-c
) must be provided to bpftrace. If not, bpftrace
will take the address as kernel space address. Also note you may not monitor for execution while
monitoring read or write.
Examples:
bpftrace -e 'watchpoint::0x10000000:8:rw { printf("hit!\n"); exit(); }' -c ./testprogs/watchpoint
It will output "hit" and exit when the watchpoint process is trying to read or write 0x10000000.
# bpftrace -e "watchpoint::0x$(awk '$3 == "jiffies" {print $1}' /proc/kallsyms):8:w {@[kstack] = count();}"
Attaching 1 probe...
^C
......
@[
do_timer+12
tick_do_update_jiffies64.part.22+89
tick_sched_do_timer+103
tick_sched_timer+39
__hrtimer_run_queues+256
hrtimer_interrupt+256
smp_apic_timer_interrupt+106
apic_timer_interrupt+15
cpuidle_enter_state+188
cpuidle_enter+41
do_idle+536
cpu_startup_entry+25
start_secondary+355
secondary_startup_64+164
]: 319
It shows the kernel stacks in which jiffies is updated.
WARNING: this feature is experimental and may be subject to interface changes.
Syntax:
kfunc:function
kretfunc:function
These are kernel function probes implemented via eBPF trampolines which allows kernel code to call into BPF programs with practically zero overhead.
Examples:
# bpftrace -e 'kfunc:x86_pmu_stop { printf("pmu %s stop\n", str(args->event->pmu->name)); }'
# bpftrace -e 'kretfunc:fget { printf("fd %d name %s\n", args->fd, str(retval->f_path.dentry->d_name.name)); }'
You can get list of available functions via list option:
# bpftrace -l
...
kfunc:ksys_ioperm
kfunc:ksys_unshare
kfunc:ksys_setsid
kfunc:ksys_sync_helper
kfunc:ksys_fadvise64_64
kfunc:ksys_readahead
kfunc:ksys_mmap_pgoff
...
Syntax:
kfunc:function args->NAME ...
kretfunc:function args->NAME ... retval
Arguments can be accessed via args being dereferenced to argument's NAME
.
Return value can be referenced by retval
builtin, see the 1. Builtins.
It's possible to get available argument names for function via verbose list option:
# bpftrace -lv
...
kfunc:fget
unsigned int fd;
struct file * retval;
...
The fget
function takes one argument as file descriptor and
you can access it via args->fd
in kfunc:fget
probe:
# bpftrace -e 'kfunc:fget { printf("fd %d\n", args->fd); }'
Attaching 1 probe...
fd 3
fd 3
...
The return value of fget
function probe is accessible via retval
:
# bpftrace -e 'kretfunc:fget { printf("fd %d name %s\n", args->fd, str(retval->f_path.dentry->d_name.name)); }'
Attaching 1 probe...
fd 3 name ld.so.cache
fd 3 name libselinux.so.1
fd 3 name libselinux.so.1
...
And as you can see in above example it's also possible to access function arguments on kretfunc
probes.
pid
- Process ID (kernel tgid)tid
- Thread ID (kernel pid)uid
- User IDgid
- Group IDnsecs
- Nanosecond timestampelapsed
- Nanoseconds since bpftrace initializationcpu
- Processor IDcomm
- Process namekstack
- Kernel stack traceustack
- User stack tracearg0
,arg1
, ...,argN
. - Arguments to the traced function; assumed to be 64 bits widesarg0
,sarg1
, ...,sargN
. - Arguments to the traced function (for programs that store arguments on the stack); assumed to be 64 bits wideretval
- Return value from traced functionfunc
- Name of the traced functionprobe
- Full name of the probecurtask
- Current task struct as a u64rand
- Random number as a u32cgroup
- Cgroup ID of the current processcpid
- Child pid(u32), only valid with the-c command
flag$1
,$2
, ...,$N
,$#
. - Positional parameters for the bpftrace program
Many of these are discussed in other sections (use search).
Syntax:
@global_name
@thread_local_variable_name[tid]
$scratch_name
bpftrace supports global & per-thread variables (via BPF maps), and scratch variables.
Examples:
Syntax: @name
For example, @start
:
# bpftrace -e 'BEGIN { @start = nsecs; }
kprobe:do_nanosleep /@start != 0/ { printf("at %d ms: sleep\n", (nsecs - @start) / 1000000); }'
Attaching 2 probes...
at 437 ms: sleep
at 647 ms: sleep
at 1098 ms: sleep
at 1438 ms: sleep
at 1648 ms: sleep
^C
@start: 4064438886907216
These can be implemented as an associative array keyed on the thread ID. For example, @start[tid]
:
# bpftrace -e 'kprobe:do_nanosleep { @start[tid] = nsecs; }
kretprobe:do_nanosleep /@start[tid] != 0/ {
printf("slept for %d ms\n", (nsecs - @start[tid]) / 1000000); delete(@start[tid]); }'
Attaching 2 probes...
slept for 1000 ms
slept for 1000 ms
slept for 1000 ms
slept for 1009 ms
slept for 2002 ms
[...]
Syntax: $name
For example, $delta
:
# bpftrace -e 'kprobe:do_nanosleep { @start[tid] = nsecs; }
kretprobe:do_nanosleep /@start[tid] != 0/ { $delta = nsecs - @start[tid];
printf("slept for %d ms\n", $delta / 1000000); delete(@start[tid]); }'
Attaching 2 probes...
slept for 1000 ms
slept for 1000 ms
slept for 1000 ms
Syntax:
@associative_array_name[key_name] = value
@associative_array_name[key_name, key_name2, ...] = value
These are implemented using BPF maps.
For example, @start[tid]
:
# bpftrace -e 'kprobe:do_nanosleep { @start[tid] = nsecs; }
kretprobe:do_nanosleep /@start[tid] != 0/ {
printf("slept for %d ms\n", (nsecs - @start[tid]) / 1000000); delete(@start[tid]); }'
Attaching 2 probes...
slept for 1000 ms
slept for 1000 ms
slept for 1000 ms
[...]
# bpftrace -e 'BEGIN { @[1,2] = 3; printf("%d\n", @[1,2]); clear(@); }'
Attaching 1 probe...
3
^C
This is provided by the count() function: see the Count section.
These are provided by the hist() and lhist() functions. See the Log2 Histogram and Linear Histogram sections.
Syntax: nsecs
These are implemented using bpf_ktime_get_ns().
Examples:
# bpftrace -e 'BEGIN { @start = nsecs; }
kprobe:do_nanosleep /@start != 0/ { printf("at %d ms: sleep\n", (nsecs - @start) / 1000000); }'
Attaching 2 probes...
at 437 ms: sleep
at 647 ms: sleep
at 1098 ms: sleep
at 1438 ms: sleep
^C
Syntax: kstack
This builtin is an alias to kstack()
.
Examples:
# bpftrace -e 'kprobe:ip_output { @[kstack] = count(); }'
Attaching 1 probe...
[...]
@[
ip_output+1
tcp_transmit_skb+1308
tcp_write_xmit+482
tcp_release_cb+225
release_sock+64
tcp_sendmsg+49
sock_sendmsg+48
sock_write_iter+135
__vfs_write+247
vfs_write+179
sys_write+82
entry_SYSCALL_64_fastpath+30
]: 1708
@[
ip_output+1
tcp_transmit_skb+1308
tcp_write_xmit+482
__tcp_push_pending_frames+45
tcp_sendmsg_locked+2637
tcp_sendmsg+39
sock_sendmsg+48
sock_write_iter+135
__vfs_write+247
vfs_write+179
sys_write+82
entry_SYSCALL_64_fastpath+30
]: 9048
@[
ip_output+1
tcp_transmit_skb+1308
tcp_write_xmit+482
tcp_tasklet_func+348
tasklet_action+241
__do_softirq+239
irq_exit+174
do_IRQ+74
ret_from_intr+0
cpuidle_enter_state+159
do_idle+389
cpu_startup_entry+111
start_secondary+398
secondary_startup_64+165
]: 11430
Syntax: ustack
This builtin is an alias to ustack()
.
Examples:
# bpftrace -e 'kprobe:do_sys_open /comm == "bash"/ { @[ustack] = count(); }'
Attaching 1 probe...
^C
@[
__open_nocancel+65
command_word_completion_function+3604
rl_completion_matches+370
bash_default_completion+540
attempt_shell_completion+2092
gen_completion_matches+82
rl_complete_internal+288
rl_complete+145
_rl_dispatch_subseq+647
_rl_dispatch+44
readline_internal_char+479
readline_internal_charloop+22
readline_internal+23
readline+91
yy_readline_get+152
yy_readline_get+429
yy_getc+13
shell_getc+469
read_token+251
yylex+192
yyparse+777
parse_command+126
read_command+207
reader_loop+391
main+2409
__libc_start_main+231
0x61ce258d4c544155
]: 9
@[
__open_nocancel+65
command_word_completion_function+3604
rl_completion_matches+370
bash_default_completion+540
attempt_shell_completion+2092
gen_completion_matches+82
rl_complete_internal+288
rl_complete+89
_rl_dispatch_subseq+647
_rl_dispatch+44
readline_internal_char+479
readline_internal_charloop+22
readline_internal+23
readline+91
yy_readline_get+152
yy_readline_get+429
yy_getc+13
shell_getc+469
read_token+251
yylex+192
yyparse+777
parse_command+126
read_command+207
reader_loop+391
main+2409
__libc_start_main+231
0x61ce258d4c544155
]: 18
Note that for this example to work, bash had to be recompiled with frame pointers.
Syntax: $1
, $2
, ..., $N
, $#
These are the positional parameters to the bpftrace program, also referred to as command line arguments.
If the parameter is numeric (entirely digits), it can be used as a number. If it is non-numeric, it must
be used as a string in the str()
call. If a parameter is used that was not provided, it will default to
zero for numeric context, and "" for string context. Positional parameters may also be used in probe
argument and will be treated as a string parameter.
If a positional parameter is used in str()
, it is interpreted as a pointer to the actual given string
literal, which allows to do pointer arithmetic on it. Only addition of a single constant, less or equal to
the length of the supplied string, is allowed.
$#
returns the number of positional arguments supplied.
This allows scripts to be written that use basic arguments to change their behavior. If you develop a script that requires more complex argument processing, it may be better suited for bcc instead, which supports Python's argparse and completely custom argument processing.
One-liner examples:
# bpftrace -e 'BEGIN { printf("I got %d, %s (%d args)\n", $1, str($2), $#); }' 42 "hello"
Attaching 1 probe...
I got 42, hello (2 args)
# bpftrace -e 'BEGIN { printf("%s\n", str($1 + 1)) }' "hello"
Attaching 1 probe...
ello
Script example, bsize.d:
#!/usr/local/bin/bpftrace
BEGIN
{
printf("Tracing block I/O sizes > %d bytes\n", $1);
}
tracepoint:block:block_rq_issue
/args->bytes > $1/
{
@ = hist(args->bytes);
}
When run with a 65536 argument:
# ./bsize.bt 65536
Attaching 2 probes...
Tracing block I/O sizes > 65536 bytes
^C
@:
[512K, 1M) 1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
It has passed the argument in as $1, and used it as a filter.
With no arguments, $1 defaults to zero:
# ./bsize.bt
Attaching 2 probes...
Tracing block I/O sizes > 0 bytes
^C
@:
[4K, 8K) 115 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[8K, 16K) 35 |@@@@@@@@@@@@@@@ |
[16K, 32K) 5 |@@ |
[32K, 64K) 3 |@ |
[64K, 128K) 1 | |
[128K, 256K) 0 | |
[256K, 512K) 0 | |
[512K, 1M) 1 | |
printf(char *fmt, ...)
- Print formattedtime(char *fmt)
- Print formatted timejoin(char *arr[] [, char *delim])
- Print the arraystr(char *s [, int length])
- Returns the string pointed to by sbuf(void *d [, int length])
- Returns a hex-formatted string of the data pointed to by dksym(void *p)
- Resolve kernel addressusym(void *p)
- Resolve user space addresskaddr(char *name)
- Resolve kernel symbol nameuaddr(char *name)
- Resolve user-level symbol namereg(char *name)
- Returns the value stored in the named registersystem(char *fmt)
- Execute shell commandexit()
- Quit bpftracecgroupid(char *path)
- Resolve cgroup IDkstack([StackMode mode, ][int level])
- Kernel stack traceustack([StackMode mode, ][int level])
- User stack tracentop([int af, ]int|char[4|16] addr)
- Convert IP address data to textcat(char *filename)
- Print file contentsignal(char[] signal | u32 signal)
- Send a signal to the current taskstrncmp(char *s1, char *s2, int length)
- Compare first n characters of two stringsoverride(u64 rc)
- Override return valuebuf(void *d [, length])
- Hex-format a buffersizeof(...)
- Return size of a type or expressionprint(...)
- Print a non-map value with default formattingstrftime(char *format, int nsecs)
- Return a formatted timestamppath(struct path *path)
- Return full pathuptr(void *p)
- Annotate as userspace pointerkptr(void *p)
- Annotate as kernelspace pointer
Some of these are asynchronous: the kernel queues the event, but some time later (milliseconds) it is
processed in user-space. The asynchronous actions are: printf()
, time()
, and join()
. Both ksym()
and usym()
, as well as the variables kstack
and ustack
, record addresses synchronously, but then do
symbol translation asynchronously.
A selection of these are discussed in the following sections.
Syntax: printf(fmt, args)
This behaves like printf() from C and other languages, with a limited set of format characters. Example:
# bpftrace -e 'tracepoint:syscalls:sys_enter_execve { printf("%s called %s\n", comm, str(args->filename)); }'
Attaching 1 probe...
bash called /bin/ls
bash called /usr/bin/man
man called /apps/nflx-bash-utils/bin/preconv
man called /usr/local/sbin/preconv
man called /usr/local/bin/preconv
man called /usr/sbin/preconv
man called /usr/bin/preconv
man called /apps/nflx-bash-utils/bin/tbl
[...]
Syntax: time(fmt)
This prints the current time using the format string supported by libc strftime(3)
.
# bpftrace -e 'kprobe:do_nanosleep { time("%H:%M:%S\n"); }'
07:11:03
07:11:09
^C
If a format string is not provided, it defaults to "%H:%M:%S\n".
Note that this builtin is asynchronous. The printed timestamp is the time at
which userspace has processed the queued up event, not the time at which the
bpf prog calls time()
. For a more precise timestamp, see
strftime().
Syntax: join(char *arr[] [, char *delim])
This joins the array of strings with a space character, and prints it out, separated by delimiters. The default delimiter, if none is provided, is the space character. This current version does not return a string, so it cannot be used as an argument in printf(). Example:
# bpftrace -e 'tracepoint:syscalls:sys_enter_execve { join(args->argv); }'
Attaching 1 probe...
ls --color=auto
man ls
preconv -e UTF-8
preconv -e UTF-8
preconv -e UTF-8
preconv -e UTF-8
preconv -e UTF-8
tbl
[...]
# bpftrace -e 'tracepoint:syscalls:sys_enter_execve { join(args->argv, ","); }'
Attaching 1 probe...
ls,--color=auto
man,ls
preconv,-e,UTF-8
preconv,-e,UTF-8
preconv,-e,UTF-8
preconv,-e,UTF-8
preconv,-e,UTF-8
tbl
[...]
Syntax: str(char *s [, int length])
Returns the string pointed to by s. length
can be used to limit the size of the read, and/or introduce
a null-terminator. By default, the string will have size 64 bytes (tuneable using env var
BPFTRACE_STRLEN
).
Examples:
We can take the args->filename
of sys_enter_execve
(a const char *filename
), and read the string to
which it points. This string can be provided as an argument to printf():
# bpftrace -e 'tracepoint:syscalls:sys_enter_execve { printf("%s called %s\n", comm, str(args->filename)); }'
Attaching 1 probe...
bash called /bin/ls
bash called /usr/bin/man
man called /apps/nflx-bash-utils/bin/preconv
man called /usr/local/sbin/preconv
man called /usr/local/bin/preconv
man called /usr/sbin/preconv
man called /usr/bin/preconv
man called /apps/nflx-bash-utils/bin/tbl
[...]
We can trace strings that are displayed in a bash shell. Some length tuning is employed, because:
- sys_enter_write()'s
args->buf
does not point to null-terminated strings- we use the length parameter to limit how many bytes to read of the pointed-to string
- sys_enter_write()'s
args->buf
contains messages larger than 64 bytes- we increase BPFTRACE_STRLEN to accommodate the large messages
# BPFTRACE_STRLEN=200 bpftrace -e 'tracepoint:syscalls:sys_enter_write /pid == 23506/
{ printf("<%s>\n", str(args->buf, args->count)); }'
# type pwd into terminal 23506
<p>
<w>
<d>
# press enter in terminal 23506
<
>
</home/anon
>
<anon@anon-VirtualBox:~$ >
Syntax: ksym(addr)
Examples:
# bpftrace -e 'kprobe:do_nanosleep { printf("%s\n", ksym(reg("ip"))); }'
Attaching 1 probe...
do_nanosleep
do_nanosleep
Syntax: usym(addr)
Examples:
# bpftrace -e 'uprobe:/bin/bash:readline { printf("%s\n", usym(reg("ip"))); }'
Attaching 1 probe...
readline
readline
readline
^C
Syntax: kaddr(char *name)
Examples:
# bpftrace -e 'BEGIN { printf("%s\n", str(*kaddr("usbcore_name"))); }'
Attaching 1 probe...
usbcore
^C
This is printing the usbcore_name
string from drivers/usb/core/usb.c:
const char *usbcore_name = "usbcore";
Syntax:
u64 *uaddr(symbol)
(default)u64 *uaddr(symbol)
u32 *uaddr(symbol)
u16 *uaddr(symbol)
u8 *uaddr(symbol)
Supported Probe Types:
- u(ret)probes
- USDT
Does not work with ASLR, see issue #75
The uaddr
function returns the address of the specified symbol. This lookup
happens during program compilation and cannot be used dynamically.
The default return type is u64*
. If the ELF object size matches a known
integer size (1, 2, 4 or 8 bytes) the return type is modified to match the width
(u8*
, u16*
, u32*
or u64*
resp.). As ELF does not contain type info the
type is always assumed to be unsigned.
Examples:
# bpftrace -e 'uprobe:/bin/bash:readline { printf("PS1: %s\n", str(*uaddr("ps1_prompt"))); }'
Attaching 1 probe...
PS1: \[\e[34;1m\]\u@\h:\w>\[\e[0m\]
PS1: \[\e[34;1m\]\u@\h:\w>\[\e[0m\]
^C
This is printing the ps1_prompt
string from /bin/bash, whenever a readline()
function is executed.
Syntax: reg(char *name)
Examples:
# bpftrace -e 'kprobe:tcp_sendmsg { @[ksym(reg("ip"))] = count(); }'
Attaching 1 probe...
^C
@[tcp_sendmsg]: 7
See src/arch/x86_64.cpp for the register name list.
Syntax: system(fmt)
This runs the provided command at the shell. For example:
# bpftrace --unsafe -e 'kprobe:do_nanosleep { system("ps -p %d\n", pid); }'
Attaching 1 probe...
PID TTY TIME CMD
1339 ? 00:00:15 iscsid
PID TTY TIME CMD
1339 ? 00:00:15 iscsid
PID TTY TIME CMD
1518 ? 00:01:07 irqbalance
PID TTY TIME CMD
1339 ? 00:00:15 iscsid
^C
This can be useful to execute commands or a shell script when an instrumented event happens.
Note this is an unsafe function. To use it, bpftrace must be run with --unsafe
.
Syntax: exit()
This exits bpftrace, and can be combined with an interval probe to record statistics for a certain duration. Example:
# bpftrace -e 'kprobe:do_sys_open { @opens = count(); } interval:s:1 { exit(); }'
Attaching 2 probes...
@opens: 119
Syntax: cgroupid(char *path)
This returns a cgroup ID of a specific cgroup, and can be combined with the cgroup
builtin to filter
the tasks that belong to the specific cgroup, for example:
# bpftrace -e 'tracepoint:syscalls:sys_enter_openat /cgroup == cgroupid("/sys/fs/cgroup/unified/mycg")/
{ printf("%s\n", str(args->filename)); }':
Attaching 1 probe...
/etc/ld.so.cache
/lib64/libc.so.6
/usr/lib/locale/locale-archive
/etc/shadow
^C
And in other terminal:
# echo $$ > /sys/fs/cgroup/unified/mycg/cgroup.procs
# cat /etc/shadow
Syntax: ntop([int af, ]int|char[4|16] addr)
This returns the string representation of an IPv4 or IPv6 address. ntop will infer the address type (IPv4
or IPv6) based on the addr
type and size. If an integer or char[4]
is given, ntop assumes IPv4, if a
char[16]
is given, ntop assumes IPv6. You can also pass the address type explicitly as the first
parameter.
Examples:
A simple example of ntop with an ipv4 hex-encoded literal:
bpftrace -e 'BEGIN { printf("%s\n", ntop(0x0100007f));}'
127.0.0.1
^C
Same example as before, but passing the address type explicitly to ntop:
bpftrace -e '#include <linux/socket.h>
BEGIN { printf("%s\n", ntop(AF_INET, 0x0100007f));}'
127.0.0.1
^C
A less trivial example of this usage, tracing tcp state changes, and printing the destination IPv6 address:
bpftrace -e 'tracepoint:tcp:tcp_set_state { printf("%s\n", ntop(args->daddr_v6)) }'
Attaching 1 probe...
::ffff:216.58.194.164
::ffff:216.58.194.164
::ffff:216.58.194.164
::ffff:216.58.194.164
::ffff:216.58.194.164
^C
And initiate a connection to this (or any) address in another terminal:
curl www.google.com
Syntax: kstack([StackMode mode, ][int limit])
These are implemented using BPF stack maps.
Examples:
# bpftrace -e 'kprobe:ip_output { @[kstack()] = count(); }'
Attaching 1 probe...
[...]
@[
ip_output+1
tcp_transmit_skb+1308
tcp_write_xmit+482
tcp_release_cb+225
release_sock+64
tcp_sendmsg+49
sock_sendmsg+48
sock_write_iter+135
__vfs_write+247
vfs_write+179
sys_write+82
entry_SYSCALL_64_fastpath+30
]: 1708
@[
ip_output+1
tcp_transmit_skb+1308
tcp_write_xmit+482
__tcp_push_pending_frames+45
tcp_sendmsg_locked+2637
tcp_sendmsg+39
sock_sendmsg+48
sock_write_iter+135
__vfs_write+247
vfs_write+179
sys_write+82
entry_SYSCALL_64_fastpath+30
]: 9048
@[
ip_output+1
tcp_transmit_skb+1308
tcp_write_xmit+482
tcp_tasklet_func+348
tasklet_action+241
__do_softirq+239
irq_exit+174
do_IRQ+74
ret_from_intr+0
cpuidle_enter_state+159
do_idle+389
cpu_startup_entry+111
start_secondary+398
secondary_startup_64+165
]: 11430
Sampling only three frames from the stack (limit = 3):
# bpftrace -e 'kprobe:ip_output { @[kstack(3)] = count(); }'
Attaching 1 probe...
[...]
@[
ip_output+1
tcp_transmit_skb+1308
tcp_write_xmit+482
]: 22186
You can also choose a different output format. Available formats are bpftrace
and perf
:
# bpftrace -e 'kprobe:do_mmap { @[kstack(perf)] = count(); }'
Attaching 1 probe...
[...]
@[
ffffffffb4019501 do_mmap+1
ffffffffb401700a sys_mmap_pgoff+266
ffffffffb3e334eb sys_mmap+27
ffffffffb3e03ae3 do_syscall_64+115
ffffffffb4800081 entry_SYSCALL_64_after_hwframe+61
]: 22186
It's also possible to use a different output format and limit the number of frames:
# bpftrace -e 'kprobe:do_mmap { @[kstack(perf, 3)] = count(); }'
Attaching 1 probe...
[...]
@[
ffffffffb4019501 do_mmap+1
ffffffffb401700a sys_mmap_pgoff+266
ffffffffb3e334eb sys_mmap+27
]: 22186
Syntax: ustack([StackMode mode, ][int limit])
These are implemented using BPF stack maps.
Examples:
# bpftrace -e 'kprobe:do_sys_open /comm == "bash"/ { @[ustack()] = count(); }'
Attaching 1 probe...
^C
@[
__open_nocancel+65
command_word_completion_function+3604
rl_completion_matches+370
bash_default_completion+540
attempt_shell_completion+2092
gen_completion_matches+82
rl_complete_internal+288
rl_complete+145
_rl_dispatch_subseq+647
_rl_dispatch+44
readline_internal_char+479
readline_internal_charloop+22
readline_internal+23
readline+91
yy_readline_get+152
yy_readline_get+429
yy_getc+13
shell_getc+469
read_token+251
yylex+192
yyparse+777
parse_command+126
read_command+207
reader_loop+391
main+2409
__libc_start_main+231
0x61ce258d4c544155
]: 9
@[
__open_nocancel+65
command_word_completion_function+3604
rl_completion_matches+370
bash_default_completion+540
attempt_shell_completion+2092
gen_completion_matches+82
rl_complete_internal+288
rl_complete+89
_rl_dispatch_subseq+647
_rl_dispatch+44
readline_internal_char+479
readline_internal_charloop+22
readline_internal+23
readline+91
yy_readline_get+152
yy_readline_get+429
yy_getc+13
shell_getc+469
read_token+251
yylex+192
yyparse+777
parse_command+126
read_command+207
reader_loop+391
main+2409
__libc_start_main+231
0x61ce258d4c544155
]: 18
Sampling only six frames from the stack (limit = 6):
# bpftrace -e 'kprobe:do_sys_open /comm == "bash"/ { @[ustack(6)] = count(); }'
Attaching 1 probe...
^C
@[
__open_nocancel+65
command_word_completion_function+3604
rl_completion_matches+370
bash_default_completion+540
attempt_shell_completion+2092
gen_completion_matches+82
]: 27
You can also choose a different output format. Available formats are bpftrace
and perf
:
# bpftrace -e 'uprobe:bash:readline { printf("%s\n", ustack(perf)); }'
Attaching 1 probe...
5649feec4090 readline+0 (/home/mmarchini/bash/bash/bash)
5649fee2bfa6 yy_readline_get+451 (/home/mmarchini/bash/bash/bash)
5649fee2bdc6 yy_getc+13 (/home/mmarchini/bash/bash/bash)
5649fee2cd36 shell_getc+469 (/home/mmarchini/bash/bash/bash)
5649fee2e527 read_token+251 (/home/mmarchini/bash/bash/bash)
5649fee2d9e2 yylex+192 (/home/mmarchini/bash/bash/bash)
5649fee286fd yyparse+777 (/home/mmarchini/bash/bash/bash)
5649fee27dd6 parse_command+54 (/home/mmarchini/bash/bash/bash)
It's also possible to use a different output format and limit the number of frames:
# bpftrace -e 'uprobe:bash:readline { printf("%s\n", ustack(perf, 3)); }'
Attaching 1 probe...
5649feec4090 readline+0 (/home/mmarchini/bash/bash/bash)
5649fee2bfa6 yy_readline_get+451 (/home/mmarchini/bash/bash/bash)
5649fee2bdc6 yy_getc+13 (/home/mmarchini/bash/bash/bash)
Note that for these examples to work, bash had to be recompiled with frame pointers.
Syntax: cat(filename)
This prints the file content. For example:
# bpftrace -e 't:syscalls:sys_enter_execve { printf("%s ", str(args->filename)); cat("/proc/loadavg"); }'
Attaching 1 probe...
/usr/libexec/grepconf.sh 3.18 2.90 2.94 2/977 30138
/usr/bin/grep 3.18 2.90 2.94 4/978 30139
/usr/bin/flatpak 3.18 2.90 2.94 2/980 30143
/usr/bin/grep 3.18 2.90 2.94 3/977 30144
/usr/bin/sed 3.18 2.90 2.94 7/978 30146
/usr/bin/tclsh 3.18 2.90 2.94 5/978 30150
/usr/bin/manpath 3.18 2.90 2.94 2/978 30152
/bin/ps 3.18 2.90 2.94 2/979 30155
^C
The cat()
builtin also supports a format string as argument:
./bpftrace -e 'tracepoint:syscalls:sys_enter_sendmsg { printf("%s => ", comm);
cat("/proc/%d/cmdline", pid); printf("\n") }'
Attaching 1 probe...
Gecko_IOThread => /usr/lib64/firefox/firefox
Gecko_IOThread => /usr/lib64/firefox/firefox
Gecko_IOThread => /usr/lib64/firefox/firefox
Gecko_IOThread => /usr/lib64/firefox/firefox
Gecko_IOThread => /usr/lib64/firefox/firefox
Gecko_IOThread => /usr/lib64/firefox/firefox
Gecko_IOThread => /usr/lib64/firefox/firefox
^C
Syntax:
signal(u32 signal)
signal("SIG")
Kernel: 5.3
Supported Probe Types:
- k(ret)probes
- u(ret)probes
- USDT
- profile
signal
sends the specified signal to the current task:
# bpftrace -e 'kprobe:__x64_sys_execve /comm == "bash"/ { signal(5); }' --unsafe
$ ls
Trace/breakpoint trap (core dumped)
The signal can also be specified using a name, similar to the kill(1)
command:
# bpftrace -e 'k:f { signal("KILL"); }'
# bpftrace -e 'k:f { signal("SIGINT"); }'
Syntax: strncmp(char *s1, char *s2, int length)
Return zero if the first length
characters in s1
and s2
are equal, and non-zero otherwise.
Examples:
bpftrace -e 't:syscalls:sys_enter_* /strncmp("mpv", comm, 3) == 0/ { @[comm, probe] = count() }'
Attaching 320 probes...
[...]
@[mpv/vo, tracepoint:syscalls:sys_enter_rt_sigaction]: 238
@[mpv:gdrv0, tracepoint:syscalls:sys_enter_futex]: 680
@[mpv/ao, tracepoint:syscalls:sys_enter_write]: 1022
@[mpv, tracepoint:syscalls:sys_enter_ioctl]: 2677
@[mpv:cs0, tracepoint:syscalls:sys_enter_ioctl]: 2889
@[mpv/vo, tracepoint:syscalls:sys_enter_read]: 2993
@[mpv/demux, tracepoint:syscalls:sys_enter_futex]: 4745
@[mpv, tracepoint:syscalls:sys_enter_write]: 6936
@[mpv/vo, tracepoint:syscalls:sys_enter_futex]: 7662
@[mpv:cs0, tracepoint:syscalls:sys_enter_futex]: 8127
@[mpv/lua script , tracepoint:syscalls:sys_enter_futex]: 10150
@[mpv/vo, tracepoint:syscalls:sys_enter_poll]: 10241
@[mpv/vo, tracepoint:syscalls:sys_enter_recvmsg]: 15018
@[mpv, tracepoint:syscalls:sys_enter_getpid]: 31178
@[mpv, tracepoint:syscalls:sys_enter_futex]: 403868
Syntax: override(u64 rc)
Kernel: 4.16
Supported Probe Types: kprobes
The probed function will not be executed, instead a helper will be executed
that will just return rc
.
# bpftrace -e 'k:__x64_sys_getuid /comm == "id"/ { override(2<<21); }' --unsafe -c id
uid=4194304 gid=0(root) euid=0(root) groups=0(root)
This feature only works on kernels compiled with CONFIG_BPF_KPROBE_OVERRIDE
and only works on functions tagged ALLOW_ERROR_INJECTION
.
bpftrace does not test whether error injection is allowed for the probed function, instead if will fail to load the program into the kernel:
ioctl(PERF_EVENT_IOC_SET_BPF): Invalid argument
Error attaching probe: 'kprobe:vfs_read'
Syntax: buf(void *d [, int length])
Returns a hex-formatted string of the data pointed to by d
that is safe to print. Because the
length of the buffer cannot always be inferred, the length
parameter may be provided to
limit the number of bytes that are read. By default, the maximum number of bytes is 64, but this can
be tuned using the BPFTRACE_STRLEN
environment variable.
For example, we can take the buff
parameter (void *
) of sys_enter_sendto
, read the
number of bytes specified by len
(size_t
), and format the bytes in hexadecimal so that
they don't corrupt the terminal display. The resulting string can be provided as an argument to
printf() using the %r
format specifier:
# bpftrace -e 'tracepoint:syscalls:sys_enter_sendto
{ printf("Datagram bytes: %r\n", buf(args->buff, args->len)); }' -c 'ping 8.8.8.8 -c1'
Attaching 1 probe...
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
Datagram bytes: \x08\x00+\xb9\x06b\x00\x01Aen^\x00\x00\x00\x00KM\x0c\x00\x00\x00\x00\x00\x10\x11
\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&'()*+,-./01234567
64 bytes from 8.8.8.8: icmp_seq=1 ttl=52 time=19.4 ms
--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 19.426/19.426/19.426/0.000 ms
Syntax:
sizeof(TYPE)
sizeof(EXPRESSION)
Returns size of the argument in bytes. Similar to C/C++ sizeof
operator. Note
that the expression does not get evaluated.
Examples:
# bpftrace -e 'struct Foo { int x; char c; } BEGIN { printf("%d\n", sizeof(struct Foo)); }'
Attaching 1 probe...
8
# bpftrace -e 'struct Foo { int x; char c; } BEGIN { printf("%d\n", sizeof(((struct Foo)0).c)); }'
Attaching 1 probe...
1
# bpftrace -e 'BEGIN { printf("%d\n", sizeof(1 == 1)); }'
Attaching 1 probe...
8
# bpftrace --btf -e 'BEGIN { printf("%d\n", sizeof(struct task_struct)); }'
Attaching 1 probe...
13120
# bpftrace -e 'BEGIN { $x = 3; printf("%d\n", sizeof($x)); }'
Attaching 1 probe...
8
Syntax: print(value)
The print()
function can print a non-map value with default formatting.
For example, local variables and most builtins can be printed:
# bpftrace -e 'BEGIN { $t = (1, "string"); print(123); print($t); print(comm) }'
Attaching 1 probe...
123
(1, string)
bpftrace
^C
It is important to note that printing values is different than printing maps.
Both printing maps and printing values are asynchronous: the kernel queues the
event but some time later it is processed in userspace. For values, the event
contains the memcopy'd value so the value at print()
invocation time will be
printed. However for maps, only the handle to the map is queued up, so the
printed map may be different than the map at print()
invocation.
Syntax:
strftime(const char *format, int nsecs)
This returns a formatted timestamp that is printable with printf
. The format
string must be supported by strftime(3)
. nsecs
is nanoseconds since boot,
typically derived from nsecs.
Use format specifier "%s" when printing the return value. Note that strftime
does not actually return a string in bpf (kernel), the formatting happens in
userspace.
Examples:
# bpftrace -e 'i:s:1 { printf("%s\n", strftime("%H:%M:%S", nsecs)); }'
Attaching 1 probe...
13:11:22
13:11:23
13:11:24
13:11:25
13:11:26
^C
Syntax:
path(struct path *path)
Return full path referenced by struct path pointer in argument. There's list of allowed kernel functions, that can use this helper in probe.
Examples:
# bpftrace -e 'kfunc:filp_close { printf("%s\n", path(args->filp->f_path)); }'
Attaching 1 probe...
/proc/sys/net/ipv6/conf/eno2/disable_ipv6
/proc/sys/net/ipv6/conf/eno2/use_tempaddr
socket:[23276]
/proc/sys/net/ipv6/conf/eno2/disable_ipv6
socket:[17655]
/sys/devices/pci0000:00/0000:00:1c.5/0000:04:00.1/net/eno2/type
socket:[38745]
/proc/sys/net/ipv6/conf/eno2/disable_ipv6
# bpftrace -e 'kretfunc:dentry_open { printf("%s\n", path(retval->f_path)); }'
Attaching 1 probe...
/dev/pts/1 -> /dev/pts/1
Syntax:
uptr(void *p)
Annotate p
as a pointer belonging to userspace address space.
bpftrace can usually infer the address space of a pointer. However, there are
corner cases where inference fails. For example, kernel functions that deal
with userspace pointers (a parameter like const char __user *p
). In these
cases, you'll need to annotate the pointer.
Examples:
# bpftrace -e 'kprobe:do_sys_open { printf("%s\n", str(uptr(arg1))) }'
Attaching 1 probe...
.
state
^C
Syntax:
kptr(void *p)
Annotate p
as a pointer belonging to kernel address space.
Just like uptr
, you'll generally only need this if bpftrace has inferred the
pointer address space incorrectly.
Maps are special BPF data types that can be used to store counts, statistics, and histograms. They are
also used for some variable types as discussed in the previous section, whenever @
is used:
globals, per thread variables, and associative
arrays.
When bpftrace exits, all maps are printed. For example (the count()
function is covered in the sections
that follow):
# bpftrace -e 'kprobe:vfs_read { @[comm] = count(); }'
Attaching 1 probe...
^C
@[systemd]: 6
@[vi]: 7
@[sshd]: 16
@[snmpd]: 321
@[snmp-pass]: 374
The map was printed after the Ctrl-C to end the program. If you use maps that you do not wish to be automatically printed on exit, you can add an END block that clears the maps. For example:
END
{
clear(@start);
}
count()
- Count the number of times this function is calledsum(int n)
- Sum the valueavg(int n)
- Average the valuemin(int n)
- Record the minimum value seenmax(int n)
- Record the maximum value seenstats(int n)
- Return the count, average, and total for this valuehist(int n)
- Produce a log2 histogram of values of nlhist(int n, int min, int max, int step)
- Produce a linear histogram of values of ndelete(@x[key])
- Delete the map element passed in as an argumentprint(@x[, top [, div]])
- Print the map, optionally the top entries only and with a divisorprint(value)
- Print a valueclear(@x)
- Delete all keys from the mapzero(@x)
- Set all map values to zero
Some of these are asynchronous: the kernel queues the event, but some time later (milliseconds) it is
processed in user-space. The asynchronous actions are: print()
on maps, clear()
, and zero()
.
Syntax: @counter_name[optional_keys] = count()
This is implemented using a BPF map.
For example, @reads
:
# bpftrace -e 'kprobe:vfs_read { @reads = count(); }'
Attaching 1 probe...
^C
@reads: 119
That shows there were 119 calls to vfs_read() while tracing.
This next example includes the comm
variable as a key, so that the value is broken down by each process
name. For example, @reads[comm]
:
# bpftrace -e 'kprobe:vfs_read { @reads[comm] = count(); }'
Attaching 1 probe...
^C
@reads[sleep]: 4
@reads[bash]: 5
@reads[ls]: 7
@reads[snmp-pass]: 8
@reads[snmpd]: 14
@reads[sshd]: 14
Syntax: @counter_name[optional_keys] = sum(value)
This is implemented using a BPF map.
For example, @bytes[comm]
:
# bpftrace -e 'kprobe:vfs_read { @bytes[comm] = sum(arg2); }'
Attaching 1 probe...
^C
@bytes[bash]: 7
@bytes[sleep]: 4160
@bytes[ls]: 6208
@bytes[snmpd]: 20480
@bytes[snmp-pass]: 65536
@bytes[sshd]: 262144
That is summing requested bytes via the vfs_read() kernel function, which is one of two possible entry points for the read syscall. To see actual bytes read:
# bpftrace -e 'kretprobe:vfs_read /retval > 0/ { @bytes[comm] = sum(retval); }'
Attaching 1 probe...
^C
@bytes[bash]: 5
@bytes[sshd]: 1135
@bytes[systemd-journal]: 1699
@bytes[sleep]: 2496
@bytes[ls]: 4583
@bytes[snmpd]: 35549
@bytes[snmp-pass]: 55681
Now a filter is used to ensure the return value was positive before it is used in the sum(). The return value may be negative in cases of error, as is the case with other functions. Remember this whenever using sum() on a retval.
Syntax: @counter_name[optional_keys] = avg(value)
This is implemented using a BPF map.
For example, @bytes[comm]
:
# bpftrace -e 'kprobe:vfs_read { @bytes[comm] = avg(arg2); }'
Attaching 1 probe...
^C
@bytes[bash]: 1
@bytes[sleep]: 832
@bytes[ls]: 886
@bytes[snmpd]: 1706
@bytes[snmp-pass]: 8192
@bytes[sshd]: 16384
This is averaging the requested read size.
Syntax: @counter_name[optional_keys] = min(value)
This is implemented using a BPF map.
For example, @bytes[comm]
:
# bpftrace -e 'kprobe:vfs_read { @bytes[comm] = min(arg2); }'
Attaching 1 probe...
^C
@bytes[bash]: 1
@bytes[systemd-journal]: 8
@bytes[snmpd]: 64
@bytes[ls]: 832
@bytes[sleep]: 832
@bytes[snmp-pass]: 8192
@bytes[sshd]: 16384
This shows the minimum value seen.
Syntax: @counter_name[optional_keys] = max(value)
This is implemented using a BPF map.
For example, @bytes[comm]
:
# bpftrace -e 'kprobe:vfs_read { @bytes[comm] = max(arg2); }'
Attaching 1 probe...
^C
@bytes[bash]: 1
@bytes[systemd-journal]: 8
@bytes[sleep]: 832
@bytes[ls]: 1024
@bytes[snmpd]: 4096
@bytes[snmp-pass]: 8192
@bytes[sshd]: 16384
This shows the maximum value seen.
Syntax: @counter_name[optional_keys] = stats(value)
This is implemented using a BPF map.
For example, @bytes[comm]
:
# bpftrace -e 'kprobe:vfs_read { @bytes[comm] = stats(arg2); }'
Attaching 1 probe...
^C
@bytes[bash]: count 7, average 1, total 7
@bytes[sleep]: count 5, average 832, total 4160
@bytes[ls]: count 7, average 886, total 6208
@bytes[snmpd]: count 18, average 1706, total 30718
@bytes[snmp-pass]: count 12, average 8192, total 98304
@bytes[sshd]: count 15, average 16384, total 245760
This stats() function returns three statistics: the count of events, the average for the argument value, and the total of the argument value. This is similar to using count(), avg(), and sum().
Syntax:
@histogram_name[optional_key] = hist(value)
This is implemented using a BPF map.
Examples:
# bpftrace -e 'kretprobe:vfs_read { @bytes = hist(retval); }'
Attaching 1 probe...
^C
@bytes:
(..., 0) 117 |@@@@@@@@@@@@ |
[0] 5 | |
[1] 325 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[2, 4) 6 | |
[4, 8) 3 | |
[8, 16) 495 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[16, 32) 35 |@@@ |
[32, 64) 25 |@@ |
[64, 128) 21 |@@ |
[128, 256) 1 | |
[256, 512) 3 | |
[512, 1K) 2 | |
[1K, 2K) 1 | |
[2K, 4K) 2 | |
# bpftrace -e 'kretprobe:do_sys_open { @bytes[comm] = hist(retval); }'
Attaching 1 probe... ^C
@bytes[snmp-pass]:
[4, 8) 6 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
@bytes[ls]:
[2, 4) 9 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
@bytes[snmpd]:
[1] 1 |@@@@ |
[2, 4) 0 | |
[4, 8) 0 | |
[8, 16) 4 |@@@@@@@@@@@@@@@@@@ |
[16, 32) 11 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
@bytes[irqbalance]:
(..., 0) 15 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[0] 0 | |
[1] 0 | |
[2, 4) 0 | |
[4, 8) 21 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
Syntax:
@histogram_name[optional_key] = lhist(value, min, max, step)
This is implemented using a BPF map. min
must be non-negative.
Examples:
# bpftrace -e 'kretprobe:vfs_read { @bytes = lhist(retval, 0, 10000, 1000); }'
Attaching 1 probe...
^C
@bytes:
[0, 1000) 480 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[1000, 2000) 49 |@@@@@ |
[2000, 3000) 12 |@ |
[3000, 4000) 39 |@@@@ |
[4000, 5000) 267 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
Syntax: print(@map [, top [, divisor]])
The print()
function will print a map, similar to the automatic printing when bpftrace ends. Two
optional arguments can be provided: a top number, so that only the top number of entries are printed, and
a divisor, which divides the value. A couple of examples will explain their use.
As an example of top, tracing vfs
operations and printing the top 5:
# bpftrace -e 'kprobe:vfs_* { @[func] = count(); } END { print(@, 5); clear(@); }'
Attaching 54 probes...
^C
@[vfs_getattr]: 91
@[vfs_getattr_nosec]: 92
@[vfs_statx_fd]: 135
@[vfs_open]: 188
@[vfs_read]: 405
The final clear()
is used to prevent printing the map automatically on exit.
As an example of divisor, summing total time in vfs_read() by process name as milliseconds:
# bpftrace -e 'kprobe:vfs_read { @start[tid] = nsecs; }
kretprobe:vfs_read /@start[tid]/ {@ms[pid] = sum(nsecs - @start[tid]); delete(@start[tid]); }
END { print(@ms, 0, 1000000); clear(@ms); clear(@start); }'
This one-liner sums the vfs_read() durations as nanoseconds, and then does the division to milliseconds
when printing. Without this capability, should one try to divide to milliseconds when summing (eg,
sum((nsecs - @start[tid]) / 1000000)
), the value would often be rounded to zero, and not accumulate as
it should.
Note that printing maps is different than printing values. See the explanation
in print()
: Print Value.
Syntax: printf(char *format, arguments)
Per-event details can be printed using print()
.
Examples:
# bpftrace -e 'kprobe:do_nanosleep { printf("sleep by %d\n", tid); }'
Attaching 1 probe...
sleep by 3669
sleep by 1396
sleep by 3669
sleep by 1396
[...]
Syntax: interval:s:duration_seconds
Examples:
# bpftrace -e 'kprobe:do_sys_open { @opens = @opens + 1; }
interval:s:1 { printf("opens/sec: %d\n", @opens); @opens = 0; }'
Attaching 2 probes...
opens/sec: 16
opens/sec: 2
opens/sec: 3
opens/sec: 15
opens/sec: 8
opens/sec: 2
^C
@opens: 2
Declared histograms are automatically printed out on program termination. See 5. Histograms for declarations.
Examples:
# bpftrace -e 'kretprobe:vfs_read { @bytes = hist(retval); }'
Attaching 1 probe...
^C
@bytes:
(..., 0) 117 |@@@@@@@@@@@@ |
[0] 5 | |
[1] 325 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[2, 4) 6 | |
[4, 8) 3 | |
[8, 16) 495 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[16, 32) 35 |@@@ |
[32, 64) 25 |@@ |
[64, 128) 21 |@@ |
[128, 256) 1 | |
[256, 512) 3 | |
[512, 1K) 2 | |
[1K, 2K) 1 | |
[2K, 4K) 2 | |
Histograms can also be printed on-demand, using the print()
function. Eg:
# bpftrace -e 'kretprobe:vfs_read { @bytes = hist(retval); } interval:s:1 { print(@bytes); clear(@bytes); }'
[...]
bpftrace can be used to create some powerful one-liners and some simple tools. For complex tools, which may involve command line options, positional parameters, argument processing, and customized output, consider switching to bcc. bcc provides Python (and other) front-ends, enabling usage of all the other Python libraries (including argparse), as well as a direct control of the kernel BPF program. The down side is that bcc is much more verbose and laborious to program. Together, bpftrace and bcc are complimentary.
An expected development path would be exploration with bpftrace one-liners, then and ad hoc scripting with bpftrace, then finally, when needed, advanced tooling with bcc.
As an example of bpftrace vs bcc differences, the bpftrace xfsdist.bt tool also exists in bcc as xfsdist.py. Both measure the same functions and produce the same summary of information. However, the bcc version supports various arguments:
# ./xfsdist.py -h
usage: xfsdist.py [-h] [-T] [-m] [-p PID] [interval] [count]
Summarize XFS operation latency
positional arguments:
interval output interval, in seconds
count number of outputs
optional arguments:
-h, --help show this help message and exit
-T, --notimestamp don't include timestamp on interval output
-m, --milliseconds output in milliseconds
-p PID, --pid PID trace this PID only
examples:
./xfsdist # show operation latency as a histogram
./xfsdist -p 181 # trace PID 181 only
./xfsdist 1 10 # print 1 second summaries, 10 times
./xfsdist -m 5 # 5s summaries, milliseconds
The bcc version is 131 lines of code. The bpftrace version is 22.
BPF programs that operate on many data items may hit this limit. There are a number of things you can try to stay within the limit:
- Find ways to reduce the size of the data used in the program. Eg, avoid strings if they are
unnecessary: use
pid
instead ofcomm
. Use fewer map keys. - Split your program over multiple probes.
- Check the status of the BPF stack limit in Linux (it may be increased in the future, maybe as a tuneabe).
- (advanced): Run -d and examine the LLVM IR, and look for ways to optimize src/ast/codegen_llvm.cpp.
bpftrace requires kernel headers for certain features, which are searched for by default in:
/lib/modules/$(uname -r)
The default search directory can be overridden using the environment variable BPFTRACE_KERNEL_SOURCE
.