-
Notifications
You must be signed in to change notification settings - Fork 18
/
wloss_hq_wav2lip_train.py
470 lines (360 loc) · 17.4 KB
/
wloss_hq_wav2lip_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from os.path import dirname, join, basename, isfile
from tqdm import tqdm
import torch.autograd as autograd
from models import SyncNet_color as SyncNet
from models import Wav2Lip, Wav2Lip_disc_qual
import audio
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torch.backends.cudnn as cudnn
from torch.utils import data as data_utils
import numpy as np
from glob import glob
import torch.multiprocessing as mp
import torch.distributed as dist
import os, random, cv2, argparse
from hparams import hparams, get_image_list
parser = argparse.ArgumentParser(description='Code to train the Wav2Lip model WITH the visual quality discriminator')
parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True, type=str)
parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str)
parser.add_argument('--syncnet_checkpoint_path', help='Load the pre-trained Expert discriminator', required=True, type=str)
parser.add_argument('--checkpoint_path', help='Resume generator from this checkpoint', default=None, type=str)
parser.add_argument('--disc_checkpoint_path', help='Resume quality disc from this checkpoint', default=None, type=str)
args = parser.parse_args()
global_step = 0
global_epoch = 0
use_cuda = torch.cuda.is_available()
print('use_cuda: {}'.format(use_cuda))
syncnet_T = 5
syncnet_mel_step_size = 16
LAMBDA = 10 # gradient penalty
def wasserstein_loss(y_pred, y_true):
return torch.mean(y_true * y_pred)
class Dataset(object):
def __init__(self, split):
self.all_videos = get_image_list(args.data_root, split)
def get_frame_id(self, frame):
return int(basename(frame).split('.')[0])
def get_window(self, start_frame):
start_id = self.get_frame_id(start_frame)
vidname = dirname(start_frame)
window_fnames = []
for frame_id in range(start_id, start_id + syncnet_T):
frame = join(vidname, '{}.jpg'.format(frame_id))
if not isfile(frame):
return None
window_fnames.append(frame)
return window_fnames
def read_window(self, window_fnames):
if window_fnames is None: return None
window = []
for fname in window_fnames:
img = cv2.imread(fname)
if img is None:
return None
try:
img = cv2.resize(img, (hparams.img_size, hparams.img_size))
except Exception as e:
return None
window.append(img)
return window
def crop_audio_window(self, spec, start_frame):
if type(start_frame) == int:
start_frame_num = start_frame
else:
start_frame_num = self.get_frame_id(start_frame)
start_idx = int(80. * (start_frame_num / float(hparams.fps)))
end_idx = start_idx + syncnet_mel_step_size
return spec[start_idx : end_idx, :]
def get_segmented_mels(self, spec, start_frame):
mels = []
assert syncnet_T == 5
start_frame_num = self.get_frame_id(start_frame) + 1 # 0-indexing ---> 1-indexing
if start_frame_num - 2 < 0: return None
for i in range(start_frame_num, start_frame_num + syncnet_T):
m = self.crop_audio_window(spec, i - 2)
if m.shape[0] != syncnet_mel_step_size:
return None
mels.append(m.T)
mels = np.asarray(mels)
return mels
def prepare_window(self, window):
# 3 x T x H x W
x = np.asarray(window) / 255.
x = np.transpose(x, (3, 0, 1, 2))
return x
def __len__(self):
return len(self.all_videos)
def __getitem__(self, idx):
while 1:
idx = random.randint(0, len(self.all_videos) - 1)
vidname = self.all_videos[idx]
img_names = list(glob(join(vidname, '*.jpg')))
if len(img_names) <= 3 * syncnet_T:
continue
img_name = random.choice(img_names)
wrong_img_name = random.choice(img_names)
while wrong_img_name == img_name:
wrong_img_name = random.choice(img_names)
window_fnames = self.get_window(img_name)
wrong_window_fnames = self.get_window(wrong_img_name)
if window_fnames is None or wrong_window_fnames is None:
continue
window = self.read_window(window_fnames)
if window is None:
continue
wrong_window = self.read_window(wrong_window_fnames)
if wrong_window is None:
continue
try:
wavpath = join(vidname, "audio.wav")
wav = audio.load_wav(wavpath, hparams.sample_rate)
orig_mel = audio.melspectrogram(wav).T
except Exception as e:
continue
mel = self.crop_audio_window(orig_mel.copy(), img_name)
if (mel.shape[0] != syncnet_mel_step_size):
continue
indiv_mels = self.get_segmented_mels(orig_mel.copy(), img_name)
if indiv_mels is None: continue
window = self.prepare_window(window)
y = window.copy()
window[:, :, window.shape[2]//2:] = 0.
wrong_window = self.prepare_window(wrong_window)
x = np.concatenate([window, wrong_window], axis=0)
x = torch.FloatTensor(x)
mel = torch.FloatTensor(mel.T).unsqueeze(0)
indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1)
y = torch.FloatTensor(y)
return x, indiv_mels, mel, y
def save_sample_images(x, g, gt, global_step, checkpoint_dir):
x = (x.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
g = (g.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
gt = (gt.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
refs, inps = x[..., 3:], x[..., :3]
folder = join(checkpoint_dir, "samples_step{:09d}".format(global_step))
if not os.path.exists(folder): os.mkdir(folder)
collage = np.concatenate((refs, inps, g, gt), axis=-2)
for batch_idx, c in enumerate(collage):
for t in range(len(c)):
cv2.imwrite('{}/{}_{}.jpg'.format(folder, batch_idx, t), c[t])
logloss = nn.BCELoss()
def cosine_loss(a, v, y):
d = nn.functional.cosine_similarity(a, v)
loss = logloss(d.unsqueeze(1), y)
return loss
device = torch.device("cuda" if use_cuda else "cpu")
syncnet = SyncNet().to(device)
for p in syncnet.parameters():
p.requires_grad = False
recon_loss = nn.L1Loss()
def get_sync_loss(mel, g):
g = g[:, :, :, g.size(3)//2:]
g = torch.cat([g[:, :, i] for i in range(syncnet_T)], dim=1)
# B, 3 * T, H//2, W
a, v = syncnet(mel, g)
y = torch.ones(g.size(0), 1).float().to(device)
return cosine_loss(a, v, y)
def train(device, model, disc, train_data_loader, test_data_loader, optimizer, disc_optimizer,
checkpoint_dir=None, checkpoint_interval=None, nepochs=None):
global global_step, global_epoch
resumed_step = global_step
while global_epoch < nepochs:
print('Starting Epoch: {}'.format(global_epoch))
running_sync_loss, running_l1_loss, disc_loss, running_perceptual_loss = 0., 0., 0., 0.
running_disc_real_loss, running_disc_fake_loss = 0., 0.
running_gp = 0.
prog_bar = tqdm(enumerate(train_data_loader))
for step, (x, indiv_mels, mel, gt) in prog_bar:
disc.train()
model.train()
x = x.to(device)
mel = mel.to(device)
indiv_mels = indiv_mels.to(device)
gt = gt.to(device)
### Train generator now. Remove ALL grads.
optimizer.zero_grad()
disc_optimizer.zero_grad()
g = model(indiv_mels, x)
if hparams.syncnet_wt > 0.:
sync_loss = get_sync_loss(mel, g)
else:
sync_loss = 0.
if hparams.disc_wt > 0.:
pred = disc(g)
perceptual_loss = -pred.mean()
else:
perceptual_loss = 0.
l1loss = recon_loss(g, gt)
loss = hparams.syncnet_wt * sync_loss + hparams.disc_wt * perceptual_loss + \
(1. - hparams.syncnet_wt - hparams.disc_wt) * l1loss
loss.backward()
optimizer.step()
### Remove all gradients before Training disc
disc_optimizer.zero_grad()
pred = disc(gt)
disc_real_loss = -pred.mean()
fake_img = g.detach()
pred = disc(fake_img)
disc_fake_loss = pred.mean()
disc_fake_loss.backward()
# gradient penalty
alpha = torch.rand(1)*torch.ones(gt.size(0), 1)
alpha = alpha.expand(gt.size(0), int(gt.nelement()/gt.size(0))).contiguous().view(gt.size(0), 3, 5, 288, 288).to(device)
interpolates = alpha * gt + ((1 - alpha) * fake_img)
interpolates = interpolates.to(device)
interpolates = autograd.Variable(interpolates, requires_grad=True)
disc_interpolates = disc(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).to(device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
gradient_penalty.backward()
disc_optimizer.step()
running_disc_real_loss += disc_real_loss.item()
running_disc_fake_loss += disc_fake_loss.item()
running_gp += gradient_penalty.item()
if global_step % checkpoint_interval == 0:
save_sample_images(x, g, gt, global_step, checkpoint_dir)
# Logs
global_step += 1
cur_session_steps = global_step - resumed_step
running_l1_loss += l1loss.item()
if hparams.syncnet_wt > 0.:
running_sync_loss += sync_loss.item()
else:
running_sync_loss += 0.
if hparams.disc_wt > 0.:
running_perceptual_loss += perceptual_loss.item()
else:
running_perceptual_loss += 0.
if global_step == 1 or global_step % checkpoint_interval == 0:
save_checkpoint(
model, optimizer, global_step, checkpoint_dir, global_epoch)
save_checkpoint(disc, disc_optimizer, global_step, checkpoint_dir, global_epoch, prefix='disc_')
if global_step % hparams.eval_interval == 0:
with torch.no_grad():
average_sync_loss = eval_model(test_data_loader, global_step, device, model, disc)
if average_sync_loss < .75:
hparams.set_hparam('syncnet_wt', 0.03)
prog_bar.set_description('L1: {}, Sync: {}, Percep: {} | Fake: {}, Real: {}'.format(running_l1_loss / (step + 1),
running_sync_loss / (step + 1),
running_perceptual_loss / (step + 1),
running_disc_fake_loss / (step + 1),
running_disc_real_loss / (step + 1)))
global_epoch += 1
def eval_model(test_data_loader, global_step, device, model, disc):
eval_steps = 300
print('Evaluating for {} steps'.format(eval_steps))
running_sync_loss, running_l1_loss, running_disc_real_loss, running_disc_fake_loss, running_perceptual_loss = [], [], [], [], []
while 1:
for step, (x, indiv_mels, mel, gt) in enumerate((test_data_loader)):
model.eval()
disc.eval()
x = x.to(device)
mel = mel.to(device)
indiv_mels = indiv_mels.to(device)
gt = gt.to(device)
pred = disc(gt)
disc_real_loss = F.binary_cross_entropy(pred, torch.ones((len(pred), 1)).to(device))
g = model(indiv_mels, x)
pred = disc(g)
disc_fake_loss = F.binary_cross_entropy(pred, torch.zeros((len(pred), 1)).to(device))
running_disc_real_loss.append(disc_real_loss.item())
running_disc_fake_loss.append(disc_fake_loss.item())
sync_loss = get_sync_loss(mel, g)
if hparams.disc_wt > 0.:
perceptual_loss = disc.perceptual_forward(g)
else:
perceptual_loss = 0.
l1loss = recon_loss(g, gt)
loss = hparams.syncnet_wt * sync_loss + hparams.disc_wt * perceptual_loss + \
(1. - hparams.syncnet_wt - hparams.disc_wt) * l1loss
running_l1_loss.append(l1loss.item())
running_sync_loss.append(sync_loss.item())
if hparams.disc_wt > 0.:
running_perceptual_loss.append(perceptual_loss.item())
else:
running_perceptual_loss.append(0.)
if step > eval_steps: break
print('L1: {}, Sync: {}, Percep: {} | Fake: {}, Real: {}'.format(sum(running_l1_loss) / len(running_l1_loss),
sum(running_sync_loss) / len(running_sync_loss),
sum(running_perceptual_loss) / len(running_perceptual_loss),
sum(running_disc_fake_loss) / len(running_disc_fake_loss),
sum(running_disc_real_loss) / len(running_disc_real_loss)))
return sum(running_sync_loss) / len(running_sync_loss)
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch, prefix=''):
checkpoint_path = join(
checkpoint_dir, "{}checkpoint_step{:09d}.pth".format(prefix, global_step))
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None
torch.save({
"state_dict": model.state_dict(),
"optimizer": optimizer_state,
"global_step": step,
"global_epoch": epoch,
}, checkpoint_path)
print("Saved checkpoint:", checkpoint_path)
def _load(checkpoint_path):
if use_cuda:
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_checkpoint(path, model, optimizer, reset_optimizer=False, overwrite_global_states=True):
global global_step
global global_epoch
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
if not reset_optimizer:
optimizer_state = checkpoint["optimizer"]
if optimizer_state is not None:
print("Load optimizer state from {}".format(path))
optimizer.load_state_dict(checkpoint["optimizer"])
if overwrite_global_states:
global_step = checkpoint["global_step"]
global_epoch = checkpoint["global_epoch"]
return model
if __name__ == "__main__":
checkpoint_dir = args.checkpoint_dir
# Dataset and Dataloader setup
train_dataset = Dataset('train')
test_dataset = Dataset('val')
train_data_loader = data_utils.DataLoader(
train_dataset, batch_size=hparams.batch_size, shuffle=True,
num_workers=hparams.num_workers)
test_data_loader = data_utils.DataLoader(
test_dataset, batch_size=hparams.batch_size,
num_workers=4)
device = torch.device("cuda" if use_cuda else "cpu")
# Model
model = Wav2Lip().to(device)
disc = Wav2Lip_disc_qual().to(device)
print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
print('total DISC trainable params {}'.format(sum(p.numel() for p in disc.parameters() if p.requires_grad)))
optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad],
lr=hparams.initial_learning_rate, betas=(0.5, 0.999))
disc_optimizer = optim.Adam([p for p in disc.parameters() if p.requires_grad],
lr=hparams.disc_initial_learning_rate, betas=(0.5, 0.999))
if args.checkpoint_path is not None:
load_checkpoint(args.checkpoint_path, model, optimizer, reset_optimizer=False)
if args.disc_checkpoint_path is not None:
load_checkpoint(args.disc_checkpoint_path, disc, disc_optimizer,
reset_optimizer=False, overwrite_global_states=False)
load_checkpoint(args.syncnet_checkpoint_path, syncnet, None, reset_optimizer=True,
overwrite_global_states=False)
if not os.path.exists(checkpoint_dir):
os.mkdir(checkpoint_dir)
# Train!
train(device, model, disc, train_data_loader, test_data_loader, optimizer, disc_optimizer,
checkpoint_dir=checkpoint_dir,
checkpoint_interval=hparams.checkpoint_interval,
nepochs=hparams.nepochs)