Skip to content

Latest commit

 

History

History
107 lines (84 loc) · 5.23 KB

explainability.md

File metadata and controls

107 lines (84 loc) · 5.23 KB

Explainability

  • A Unified Approach to Interpreting Model Predictions (NeurIPS 2017)

  • L-Shapley and C-Shapley: Efficient Model Interpretation for Structured Data (ICLR 2019)

    • Jianbo Chen, Le Song, Martin J. Wainwright, Michael I. Jordan
    • [Paper]
    • [Code]
  • Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Value Approximation (ICML 2019)

  • The Explanation Game: Explaining Machine Learning Models Using Shapley Values (MAKE 2020)

  • Shapley Values and Meta-Explanations for Probabilistic Graphical Model Inference (CIKM 2020)

    • Yifei Liu, Chao Chen, Yazheng Liu, Xi Zhang, Sihong Xie
    • [Paper]
  • Problems with Shapley-value-based explanations as feature importance measures (ICML 2020)

    • I. Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, Sorelle A. Friedler
    • [Paper]
  • The Many Shapley Values for Model Explanation (ICML 2020)

    • Mukund Sundararajan, Amir Najmi
    • [Paper]
  • The Shapley Taylor Interaction Index (ICML 2020)

    • Mukund Sundararajan, Kedar Dhamdhere, Ashish Agarwal
    • [Paper]
  • Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability (NIPS 2020)

  • Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models (NIPS 2020)

    • Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, Tom Claassen
    • [Paper]
  • Neuron Shapley: Discovering the Responsible Neurons (NIPS 2020)

  • Interpreting Multivariate Shapley Interactions in DNNs (AAAI 2021)

    • Hao Zhang, Yichen Xie, Longjie Zheng, Die Zhang, Quanshi Zhang
    • [Paper]
    • [Code]
  • Shapley Flow: A Graph-based Approach to Interpreting Model Predictions (AISTATS 2021)

  • Improving KernelSHAP: Practical Shapley Value Estimation Using Linear Regression (AISTATS 2021)

  • Shapley explainability on the data manifold (ICLR 2021)

    • Christopher Frye, Damien de Mijolla, Tom Begley, Laurence Cowton, Megan Stanley, Ilya Feige
    • [Paper]
  • Shapley Explanation Networks (ICLR 2021)

  • Flow-based Attribution in Graphical Models: A Recursive Shapley Approach (ICML 2021)

    • Raghav Singal, George Michailidis, Hoiyi Ng
    • [Paper]
  • GraphSVX: Shapley Value Explanations for Graph Neural Networks (ECML PKDD 2021)

  • Threading the Needle of On and Off-Manifold Value Functions for Shapley Explanations (AISTATS 2022)

    • Chih-Kuan Yeh, Kuan-Yun Lee, Frederick Liu, Pradeep Ravikumar
    • [Paper]
  • Accurate Shapley Values for explaining tree-based models (AISTATS 2022)

    • Salim I. Amoukou, Tangi Salaün, Nicolas J.-B. Brunel
    • [Paper]
    • [Code]
  • FastSHAP: Real-Time Shapley Value Estimation (ICLR 2022)

    • Neil Jethani, Mukund Sudarshan, Ian Covert, Su-In Lee, Rajesh Ranganath
    • [Paper]
    • [Code]
  • Accelerating Shapley Explanation via Contributive Cooperator Selection (ICML 2022)

    • Guanchu Wang, Yu-Neng Chuang, Mengnan Du, Fan Yang, Quan Zhou, Pushkar Tripathi, Xuanting Cai, Xia Hu
    • [Paper]
    • [Code]
  • Algorithms to Estimate Shapley Value Feature Attributions (Arxiv 2022)

    • Hugh Chen, Ian C. Covert, Scott M. Lundberg, Su-In Lee
    • [Paper]