-
Notifications
You must be signed in to change notification settings - Fork 54
/
map_i80.py
558 lines (486 loc) · 24.4 KB
/
map_i80.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
# from os import getpid, system
from os.path import isfile
import torch
from random import choice, randrange
from custom_graphics import draw_dashed_line
from traffic_gym import Simulator, Car, colours
import pygame
import pandas as pd
import numpy as np
import pdb, random
import bisect
import pdb, pickle, os, re
# Conversion LANE_W from real world to pixels
# A US highway lane width is 3.7 metres, here 50 pixels
LANE_W = 24 # pixels / 3.7 m, lane width
SCALE = LANE_W / 3.7 # pixels per metre
FOOT = 0.3048 # metres per foot
X_OFFSET = 470 # horizontal offset (camera 2 leftmost view)
MAX_SPEED = 130
class I80Car(Car):
# Global constants
SCALE = SCALE
LANE_W = LANE_W
X_OFFSET = X_OFFSET
max_a = 40
max_b = 0.01
def __init__(self, df, y_offset, look_ahead, screen_w, font=None, kernel=0, dt=1/10):
k = kernel # running window size
self._length = df.at[df.index[0], 'Vehicle Length'] * FOOT * SCALE
self._width = df.at[df.index[0], 'Vehicle Width'] * FOOT * SCALE
self.id = df.at[df.index[0], 'Vehicle ID'] # extract scalar <'Vehicle ID'> <at> <index[0]>
# X and Y are swapped in the I-80 data set...
x = df['Local Y'].rolling(window=k).mean().shift(1 - k).values * FOOT * SCALE - self.X_OFFSET - self._length
y = df['Local X'].rolling(window=k).mean().shift(1 - k).values * FOOT * SCALE + y_offset
if dt > 1 / 10:
s = int(dt * 10)
end = len(x) - len(x) % s
x = x[:end].reshape(-1, s).mean(axis=1)
y = y[:end].reshape(-1, s).mean(axis=1)
self._max_t = len(x) - np.count_nonzero(np.isnan(x)) - 2 # 2 for computing the acceleration
self._trajectory = np.column_stack((x, y))
self._position = self._trajectory[0]
self._df = df
self._frame = 0
self._dt = dt
# self._direction = np.array((1, 0), np.float) # assumes horizontal if initially unknown
self._direction = self._get('init_direction', 0)
self._speed = self._get('speed', 0)
self._colour = colours['c']
self._braked = False
self.off_screen = self._max_t <= 0
self._states = list()
self._states_image = list()
self._ego_car_image = None
self._actions = list()
self._passing = False
self._actions = list()
self._states = list()
self.states_image = list()
self.look_ahead = look_ahead
self.screen_w = screen_w
self._safe_factor = 1.5 # second, manually matching the data
if font is not None:
self._text = self.get_text(self.id, font)
self.is_controlled = False
self._lane_list = df['Lane Identification'].values
self.collisions_per_frame = 0
@property
def is_autonomous(self):
return False
def _get(self, what, k):
direction_vector = self._trajectory[k + 1] - self._trajectory[k]
norm = np.linalg.norm(direction_vector)
if what == 'direction':
if norm < 1e-6: return self._direction # if static returns previous direction
return direction_vector / norm
if what == 'speed':
return norm / self._dt
if what == 'init_direction': # valid direction can be computed when speed is non-zero
t = 1 # check if the car is in motion the next step
while self._df.at[self._df.index[t], 'Vehicle Velocity'] < 5 and t < self._max_t: t += 1
# t point to the point in time where speed is > 5
direction_vector = self._trajectory[t] - self._trajectory[t - 1]
norm = np.linalg.norm(direction_vector)
# assert norm > 1e-6, f'norm: {norm} -> too small!'
if norm < 1e-6:
print(f'{self} has undefined direction, assuming horizontal')
return np.array((1, 0), dtype=np.float)
return direction_vector / norm
# This was trajectories replay (to be used as ground truth, without any policy and action generation)
# def step(self, action):
# position = self._position
# self._position = self._trajectory[self._frame]
# new_direction = self._position - position
# self._direction = new_direction if np.linalg.norm(new_direction) > 0.1 else self._direction
# self._direction /= np.linalg.norm(self._direction)
# assert 0.99 < np.linalg.norm(self._direction) < 1.01
# assert self._direction[0] > 0
def policy(self, *args, **kwargs):
self._frame += 1
self.off_screen = self._frame >= self._max_t
new_speed = self._get('speed', self._frame)
a = (new_speed - self._speed) / self._dt
ortho_direction = np.array((self._direction[1], -self._direction[0]))
new_direction = self._get('direction', self._frame)
b = (new_direction - self._direction).dot(ortho_direction) / (self._speed * self._dt + 1e-6)
# if abs(b) > self._speed:
# b = self._speed * np.sign(b)
# From an analysis of the action histograms -> limit a, b to sensible range
a, b = self.action_clipping(a, b)
# # Colour code for identifying trajectory divergence
# measurement = self._trajectory[self._frame]
# current_position = self._position
# distance = min(np.linalg.norm(current_position - measurement) / (2 * LANE_W) * 255, 255)
# self._colour = (distance, 255 - distance, 0)
return np.array((a, b))
def action_clipping(self, a, b):
max_a = self.max_a
max_b = self.max_b * min((25 / self._length) ** 2, 1)
a = a if abs(a) < max_a else np.sign(a) * max_a
b = b if abs(b) < max_b else np.sign(b) * max_b
return a, b
@property
def current_lane(self):
# 1: left-most, 6: right-most, 7: ramp
return self._lane_list[self._frame] - 1
def count_collisions(self, state):
self.collisions_per_frame = 0
# alpha = 1 * self.SCALE # 1 m overlap collision
# for cars in state:
# if cars:
# behind, ahead = cars
# if behind:
# d = self - behind
# if d[0] < -alpha and abs(d[1]) + alpha < (self._width + behind._width) / 2:
# self.collisions_per_frame += 1
# # print(f'Collision {self.collisions_per_frame}/6, behind, vehicle {behind.id}')
# if ahead:
# d = ahead - self
# if d[0] < -alpha and abs(d[1]) + alpha < (self._width + ahead._width) / 2:
# self.collisions_per_frame += 1
# # print(f'Collision {self.collisions_per_frame}/6, ahead, vehicle {ahead.id}')
beta = 0.99
if self._states_image and self._states_image[-1][2] > beta:
self.collisions_per_frame += 1
# print(f'Collision registered for vehicle {self}')
# print(f'Accident! Check vehicle {self}. Proximity of {self._states_image[-1][2]}.')
class I80(Simulator):
# Environment's car class
EnvCar = I80Car
# Global constants
SCALE = SCALE
LANE_W = LANE_W
X_OFFSET = X_OFFSET
DUMP_NAME = 'data_i80_v0'
def __init__(self, **kwargs):
kwargs['nb_lanes'] = 6
delta_t = kwargs['delta_t']
assert delta_t >= 1 / 10, f'Minimum delta t is 0.1s > {delta_t:.2f}s you tried to set'
assert (delta_t * 10).is_integer(), f'dt: {delta_t:.2f}s must be a multiple of 0.1s'
super().__init__(**kwargs)
self.screen_size = (85 * self.LANE_W, self.nb_lanes * self.LANE_W + 5 * self.LANE_W)
# self.photos = (
# pygame.image.load('I-80/cam2.png'),
# pygame.image.load('I-80/cam3.png'),
# pygame.image.load('I-80/cam4.png'),
# pygame.image.load('I-80/cam5.png'),
# )
# self.photos_rect = (
# self.photos[0].get_rect().move([0, 22]),
# self.photos[1].get_rect().move([932, 22 + 2]),
# self.photos[2].get_rect().move([932 + 340, 22 + 2]),
# self.photos[3].get_rect().move([932 + 340 + 360, 22 - 2]),
# )
if self.display: # if display is required
self.screen = pygame.display.set_mode(self.screen_size) # set screen size
# self.delta_t = 1 / 10 # simulation timing interval
self._time_slots = (
'i80/trajectories-0400-0415',
'i80/trajectories-0500-0515',
'i80/trajectories-0515-0530',
)
self._t_slot = None
self._black_list = {
self._time_slots[0]:
{1628, 2089, 2834, 2818, 2874, # ground truth errors (GTE)
1383, 1430, 1456, 1589, 1913}, # kinematic modelling errors (KME)
self._time_slots[1]:
{537, 1119, 1261, 1215, 1288, 1381, 1382, 1348, 2512, 2462, 2442, 2427,
2407, 2486, 2296, 2427, 2552, 2500, 2616, 2555, 2586, 2669,
876, 882, 953, 1290, 1574, 2053, 2054, 2134, 2332, 2117, 2301, 2488, # KME
2519, 2421, 2788}, # KME
self._time_slots[2]:
{269, 567, 722, 790, 860, 1603, 1651, 1734, 1762, 1734,
1800, 1722, 1878, 2056, 2075, 2258, 2252, 2285, 2362,
3004, 401, 510, 682, 680, 815, 827, 1675, 1780, 1751, 1831, # KME
2200, 2080, 2119, 2170, 2369, 2480, 1797}, # KME
}
self.df = None
self.vehicles_history = None
self.lane_occupancy = None
self.nb_lanes = 7
self.smoothing_window = 15
self.max_frame = -1
pth = 'traffic-data/state-action-cost/data_i80_v0/data_stats.pth'
self.data_stats = torch.load(pth) if self.normalise_state or self.normalise_action else None
self.cached_data_frames = dict()
self.episode = 0
self.train_indx = None
self.indx_order = None
def _get_data_frame(self, time_slot, x_max, x_offset):
if time_slot in self.cached_data_frames:
return self.cached_data_frames[time_slot]
file_name = f'traffic-data/xy-trajectories/{time_slot}'
if isfile(file_name + '.pkl'):
file_name += '.pkl'
print(f'Loading trajectories from {file_name}')
df = pd.read_pickle(file_name)
elif isfile(file_name + '.txt'):
file_name += '.txt'
print(f'Loading trajectories from {file_name}')
df = pd.read_csv(file_name, sep=r'\s+', header=None, names=(
'Vehicle ID',
'Frame ID',
'Total Frames',
'Global Time',
'Local X',
'Local Y',
'Global X',
'Global Y',
'Vehicle Length',
'Vehicle Width',
'Vehicle Class',
'Vehicle Velocity',
'Vehicle Acceleration',
'Lane Identification',
'Preceding Vehicle',
'Following Vehicle',
'Spacing',
'Headway'
))
else:
raise FileNotFoundError(f'{file_name}.{{pkl,txt}} not found.')
# Get valid x coordinate rows
valid_x = (df['Local Y'] * FOOT * SCALE - x_offset).between(0, x_max)
# Cache data frame for later retrieval
self.cached_data_frames[time_slot] = df[valid_x]
# Restrict data frame to valid x coordinates
return df[valid_x]
def _get_first_frame(self, v_id):
vehicle_data = self.df[self.df['Vehicle ID'] == v_id]
frame = vehicle_data.at[vehicle_data.index[0], 'Frame ID']
return frame
def reset(self, frame=None, time_slot=None, vehicle_id=None, train_only=False):
# train_only = True # uncomment this if doing RL, to set as default behaviour
if train_only:
################################################################################
# Looping over training split ONLY
################################################################################
if self.train_indx is None:
train_indx_file = '/home/atcold/Work/GitHub/pytorch-Traffic-Simulator/train_indx.pkl'
if not os.path.isfile(train_indx_file):
import get_data_idx
print('Loading training indices')
with open(train_indx_file, 'rb') as f:
self.train_indx = pickle.load(f)
self.indx_order = list(self.train_indx.keys())
self.random.shuffle(self.indx_order)
assert not(frame or time_slot or vehicle_id), 'Already selecting training episode from file.'
time_slot, vehicle_id = self.train_indx[self.indx_order[self.episode % len(self.indx_order)]]
self.episode += 1
################################################################################
super().reset(control=(frame is None))
# print(f'\n > Env on process {os.getpid()} is resetting')
self._t_slot = self._time_slots[time_slot] if time_slot is not None else self.random.choice(self._time_slots)
self.df = self._get_data_frame(self._t_slot, self.screen_size[0], self.X_OFFSET)
self.max_frame = max(self.df['Frame ID'])
if vehicle_id: frame = self._get_first_frame(vehicle_id)
if frame is None: # controlled
# Start at a random valid (new_vehicles is not empty) initial frame
frame_df = self.df['Frame ID'].values
new_vehicles = set()
while not new_vehicles:
frame = self.random.randrange(min(frame_df), max(frame_df))
vehicles_history = set(self.df[self.df['Frame ID'] <= frame]['Vehicle ID'])
new_vehicles = set(self.df[self.df['Frame ID'] > frame]['Vehicle ID']) - vehicles_history
new_vehicles -= self._black_list[self._t_slot] # clean up fuckers
if self.controlled_car:
self.controlled_car['frame'] = frame
self.controlled_car['v_id'] = vehicle_id
self.frame = frame - int(self.delta_t * 10)
self.vehicles_history = set()
# # Account for off-track vehicles
# with open('off_track.pkl', 'rb') as f:
# self.off_track = pickle.load(f)
# self.off_track = set()
# accident_file = '/Volumes/MyBox/home/atcold/Traffic/scripts/log/peach-pass-1/peach_ts1.out'
# self.accident_file = open(accident_file)
# self.accident = self.get_next_accident()
# while self.accident['frame'] < frame: self.accident = self.get_next_accident()
# def get_next_accident(self):
# file = self.accident_file
# line = file.readline()
# # Skip good frames
# a = 'Accident!'
# while not re.search(a, line or a): line = file.readline()
# frame = int(re.search('t=(\d+)', line).group(1)) if line else -1
# # Get all cars
# cars = list()
# while re.search(a, line):
# cars.append(int(re.search('Car\.(\d+)', line).group(1)))
# line = file.readline()
# return {
# 'frame': frame,
# 'cars': cars,
# }
def step(self, policy_action=None):
assert not self.done, 'Trying to step on an exhausted environment!'
if self.normalise_action and policy_action is not None:
np.multiply(policy_action, self.data_stats['a_std'], policy_action) # multiply by the std
np.add(policy_action, self.data_stats['a_mean'], policy_action) # add the mean
df = self.df
now = df['Frame ID'] == self.frame
vehicles = set(df[now]['Vehicle ID']) - self.vehicles_history - self._black_list[self._t_slot]
if vehicles:
now_and_on = df['Frame ID'] >= self.frame
for vehicle_id in vehicles:
this_vehicle = df['Vehicle ID'] == vehicle_id
car_df = df[this_vehicle & now_and_on]
if len(car_df) < self.smoothing_window + 1: continue
f = self.font[20] if self.display else None
car = self.EnvCar(car_df, self.offset, self.look_ahead, self.screen_size[0], f, self.smoothing_window,
dt=self.delta_t)
self.vehicles.append(car)
if self.controlled_car and \
not self.controlled_car['locked'] and \
self.frame >= self.controlled_car['frame'] and \
(self.controlled_car['v_id'] is None or vehicle_id == self.controlled_car['v_id']):
self.controlled_car['locked'] = car
car.is_controlled = True
car.buffer_size = self.nb_states
car.lanes = self.lanes
car.look_ahead = self.look_ahead
# print(f'Controlling car {car.id}')
# self.dump_folder = f'{self._t_slot}_{car.id}'
# print(f'Creating folder {self.dump_folder}')
# system(f'mkdir -p screen-dumps/{self.dump_folder}')
if self.store_sim_video:
self.ghost = self.EnvCar(car_df, self.offset, self.look_ahead, self.screen_size[0], f,
self.smoothing_window, dt=self.delta_t)
self.vehicles_history |= vehicles # union set operation
self.lane_occupancy = [[] for _ in range(7)]
if self.show_frame_count:
print(f'\r[t={self.frame}]', end='')
for v in self.vehicles[:]:
if v.off_screen:
# print(f'vehicle {v.id} [off screen]')
if self.state_image and self.store:
file_name = os.path.join(self.data_dir, self.DUMP_NAME, os.path.basename(self._t_slot))
print(f'[dumping {v} in {file_name}]')
v.dump_state_image(file_name, 'tensor')
self.vehicles.remove(v)
else:
# Insort it in my vehicle list
lane_idx = v.current_lane
assert v.current_lane < self.nb_lanes, f'{v} is in lane {v.current_lane} at frame {self.frame}'
bisect.insort(self.lane_occupancy[lane_idx], v)
if self.state_image or self.controlled_car and self.controlled_car['locked']:
# How much to look far ahead
look_ahead = MAX_SPEED * 1000 / 3600 * self.SCALE
look_sideways = 2 * self.LANE_W
self.render(mode='machine', width_height=(2 * look_ahead, 2 * look_sideways), scale=0.25)
for v in self.vehicles:
# Generate symbolic state
lane_idx = v.current_lane
left_vehicles = self._get_neighbours(lane_idx, -1, v) \
if 0 < lane_idx < 6 or lane_idx == 6 and v.front[0] > 18 * LANE_W else None
mid_vehicles = self._get_neighbours(lane_idx, 0, v)
right_vehicles = self._get_neighbours(lane_idx, + 1, v) \
if lane_idx < 5 or lane_idx == 5 and v.front[0] > 18 * LANE_W else None
state = left_vehicles, mid_vehicles, right_vehicles
# Sample an action based on the current state
action = v.policy() if not v.is_autonomous else policy_action
# Perform such action
v.step(action)
# Store state and action pair
if (self.store or v.is_controlled) and v.valid:
v.store('state', state)
v.store('action', action)
if v.is_controlled and v.valid:
v.count_collisions(state)
if v.collisions_per_frame > 0: self.collision = True
# # Create set of off track vehicles
# if v._colour[0] > 128: # one lane away
# if v.id not in self.off_track:
# print(f'Adding {v} to off_track set and saving it to disk')
# self.off_track.add(v.id)
# with open('off_track.pkl', 'wb') as f:
# pickle.dump(self.off_track, f)
# # Point out accidents (as in tracking bugs) in original trajectories
# if self.frame == self.accident['frame']:
# if v.id in self.accident['cars']:
# v.collisions_per_frame = 1
# self.collision = True
# if self.frame == self.accident['frame']:
# print('Colliding vehicles:', self.accident['cars'])
# self.accident = self.get_next_accident()
# Keep the ghost updated
if self.store_sim_video:
if self.ghost and self.ghost.off_screen: self.ghost = None
if self.ghost: self.ghost.step(self.ghost.policy())
self.frame += int(self.delta_t * 10)
# Run out of frames?
self.done = self.frame >= self.max_frame or self.user_is_done
if self.controlled_car and self.controlled_car['locked']:
return_ = self.controlled_car['locked'].get_last(
n=self.nb_states,
done=self.done,
norm_state=self.normalise_state and self.data_stats,
return_reward=self.return_reward,
gamma=self.gamma,
)
if return_: return return_
# return observation, reward, done, info
return None, None, self.done, None
def _draw_lanes(self, surface, mode='human', offset=0):
slope = 0.035
lanes = self.lanes # lanes
if mode == 'human':
s = surface # screen
draw_line = pygame.draw.line # shortcut
w = colours['w'] # colour white
g = (128, 128, 128)
sw = self.screen_size[0] # screen width
for lane in lanes:
draw_line(s, g, (0, lane['min']), (sw, lane['min']), 1)
# draw_dashed_line(s, colours['r'], (0, lane['mid']), (sw, lane['mid']))
draw_line(s, w, (0, lanes[0]['min']), (sw, lanes[0]['min']), 3)
bottom = lanes[-1]['max']
draw_line(s, w, (0, bottom), (18 * LANE_W, bottom), 3)
draw_line(s, w, (0, bottom + 29), (18 * LANE_W, bottom + 29 - slope * 18 * LANE_W), 3)
draw_line(s, g, (18 * LANE_W, bottom + 13), (31 * LANE_W, bottom), 1)
# draw_line(s, g, (0, bottom + 42), (60 * LANE_W, bottom + 42 - slope * 60 * LANE_W), 1)
draw_line(s, w, (0, bottom + 53), (60 * LANE_W, bottom + 53 - slope * 60 * LANE_W), 3)
draw_line(s, w, (60 * LANE_W, bottom + 3), (sw, bottom + 2), 3)
look_ahead = MAX_SPEED * 1000 / 3600 * self.SCALE
o = self.offset
draw_line(s, (255, 255, 0), (look_ahead, o), (look_ahead, 9.4 * LANE_W))
draw_line(s, (255, 255, 0), (sw - 1.75 * look_ahead, o), (sw - 1.75 * look_ahead, bottom))
draw_line(s, (255, 255, 0), (sw - 0.75 * look_ahead, o), (sw - 0.75 * look_ahead, bottom), 5)
# pygame.image.save(s, "i80-real.png")
if mode == 'machine':
s = surface # screen
draw_line = pygame.draw.line # shortcut
w = colours['r'] # colour white
b = colours['b'] # colour blue
sw = self.screen_size[0] # screen width
m = offset
for lane in lanes:
draw_line(s, w, (0, lane['min'] + m), (sw + 2 * m, lane['min'] + m), 1)
bottom = lanes[-1]['max'] + m
draw_line(s, w, (0, bottom), (m + 18 * LANE_W, bottom), 1)
draw_line(s, w, (m, bottom + 29), (m + 18 * LANE_W, bottom + 29 - slope * 18 * LANE_W), 1)
draw_line(s, w, (m + 18 * LANE_W, bottom + 13), (m + 31 * LANE_W, bottom), 1)
draw_line(s, w, (m, bottom + 53), (m + 60 * LANE_W, bottom + 53 - slope * 60 * LANE_W), 1)
draw_line(s, w, (m + 60 * LANE_W, bottom + 3), (2 * m + sw, bottom), 1)
# offroad regions
pygame.Surface.fill(s, b, pygame.Rect(m + 0, m + lanes[0]['min']-35, sw, 34))
pygame.draw.polygon(s, b, [
(m + 0, bottom+2),
(m + 0, bottom + 29-1),
(m + 18 * LANE_W, bottom + 29-1 - slope * 18 * LANE_W),
(m + 18 * LANE_W, bottom+2)
])
pygame.draw.polygon(s, b, [
(m + 0, bottom + 54),
(m + 0, bottom + 54+30),
(m + 60 * LANE_W, bottom + 54+30),
(m + 60 * LANE_W, bottom + 54 - slope * 60 * LANE_W)
])
pygame.Surface.fill(
s,
b,
pygame.Rect(m + 60 * LANE_W, bottom + 5, sw-60*LANE_W, 54+30-5))
self._lane_surfaces[mode] = surface.copy()
# pygame.image.save(surface, "i80-machine.png")