This repository has been archived by the owner on Oct 13, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
161 lines (131 loc) · 5.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
from easydict import EasyDict as edict
import yaml
import os
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
import lib.models.crnn as crnn
import lib.utils.utils as utils
from lib.dataset import get_dataset
from lib.core import function
import lib.config.alphabets as alphabets
from lib.utils.utils import model_info
from tensorboardX import SummaryWriter
def parse_arg():
parser = argparse.ArgumentParser(description="train crnn")
parser.add_argument('--cfg', help='experiment configuration filename', required=True, type=str)
args = parser.parse_args()
with open(args.cfg, 'r') as f:
# config = yaml.load(f, Loader=yaml.FullLoader)
config = yaml.load(f,Loader=yaml.FullLoader)
config = edict(config)
config.DATASET.ALPHABETS = alphabets.alphabet
config.MODEL.NUM_CLASSES = len(config.DATASET.ALPHABETS)
return config
def main():
# load config
config = parse_arg()
# create output folder
output_dict = utils.create_log_folder(config, phase='train')
# cudnn
cudnn.benchmark = config.CUDNN.BENCHMARK
cudnn.deterministic = config.CUDNN.DETERMINISTIC
cudnn.enabled = config.CUDNN.ENABLED
# writer dict
writer_dict = {
'writer': SummaryWriter(log_dir=output_dict['tb_dir']),
'train_global_steps': 0,
'valid_global_steps': 0,
}
# construct face related neural networks
model = crnn.get_crnn(config)
# get device
if torch.cuda.is_available():
device = torch.device("cuda:{}".format(config.GPUID))
else:
device = torch.device("cpu:0")
model = model.to(device)
# define loss function
criterion = torch.nn.CTCLoss()
last_epoch = config.TRAIN.BEGIN_EPOCH
optimizer = utils.get_optimizer(config, model)
if isinstance(config.TRAIN.LR_STEP, list):
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, config.TRAIN.LR_STEP,
config.TRAIN.LR_FACTOR, last_epoch-1
)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, config.TRAIN.LR_STEP,
config.TRAIN.LR_FACTOR, last_epoch - 1
)
if config.TRAIN.FINETUNE.IS_FINETUNE:
model_state_file = config.TRAIN.FINETUNE.FINETUNE_CHECKPOINIT
if model_state_file == '':
print(" => no checkpoint found")
checkpoint = torch.load(model_state_file, map_location='cpu')
if 'state_dict' in checkpoint.keys():
checkpoint = checkpoint['state_dict']
from collections import OrderedDict
model_dict = OrderedDict()
for k, v in checkpoint.items():
if 'cnn' in k:
model_dict[k[4:]] = v
model.cnn.load_state_dict(model_dict)
if config.TRAIN.FINETUNE.FREEZE:
for p in model.cnn.parameters():
p.requires_grad = False
elif config.TRAIN.RESUME.IS_RESUME:
model_state_file = config.TRAIN.RESUME.FILE
if model_state_file == '':
print(" => no checkpoint found")
checkpoint = torch.load(model_state_file, map_location='cpu')
if 'state_dict' in checkpoint.keys():
model.load_state_dict(checkpoint['state_dict'])
last_epoch = checkpoint['epoch']
# optimizer.load_state_dict(checkpoint['optimizer'])
# lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
else:
model.load_state_dict(checkpoint)
model_info(model)
train_dataset = get_dataset(config)(config, is_train=True)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=config.TRAIN.BATCH_SIZE_PER_GPU,
shuffle=config.TRAIN.SHUFFLE,
num_workers=config.WORKERS,
pin_memory=config.PIN_MEMORY,
)
val_dataset = get_dataset(config)(config, is_train=False)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=config.TEST.BATCH_SIZE_PER_GPU,
shuffle=config.TEST.SHUFFLE,
num_workers=config.WORKERS,
pin_memory=config.PIN_MEMORY,
)
best_acc = 0.95
converter = utils.strLabelConverter(config.DATASET.ALPHABETS)
for epoch in range(last_epoch, config.TRAIN.END_EPOCH):
function.train(config, train_loader, train_dataset, converter, model, criterion, optimizer, device, epoch, writer_dict, output_dict)
lr_scheduler.step()
acc = function.validate(config, val_loader, val_dataset, converter, model, criterion, device, epoch, writer_dict, output_dict)
is_best = acc > best_acc
best_acc = max(acc, best_acc)
print("is best:", is_best)
print("best acc is:", best_acc)
# save checkpoint
torch.save(
{
"state_dict": model.state_dict(),
"epoch": epoch + 1,
# "optimizer": optimizer.state_dict(),
# "lr_scheduler": lr_scheduler.state_dict(),
"best_acc": best_acc,
}, os.path.join(output_dict['chs_dir'], "checkpoint_{}_acc_{:.4f}.pth".format(epoch, acc))
)
torch_out = torch.onnx._export(model, img_tensor, "test.onnx", export_params=True)
writer_dict['writer'].close()
if __name__ == '__main__':
main()