
Science of Computer Programming 61 (2006) 228–244
www.elsevier.com/locate/scico

Evaluating GLR parsing algorithms

Adrian Johnstone∗, Elizabeth Scott, Giorgios Economopoulos

Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, United Kingdom

Available online 19 May 2006

Abstract

We describe the behaviour of three variants of GLR parsing: (i) Farshi’s original correction to Tomita’s non-general algorithm;
(ii) the Right Nulled GLR algorithm which provides a more efficient generalisation of Tomita and (iii) the Binary Right Nulled
GLR algorithm, on three types of LR table. We present a guide to the parse-time behaviour of these algorithms which illustrates
the inefficiencies in conventional Farshi-style GLR parsing. We also describe the tool GTB (Grammar Tool Box) which provides
a platform for comparative studies of parsing algorithms; and use GTB to exercise the three GLR algorithms running with LR(0),
SLR(1) and LR(1) tables for ANSI-C, ISO-Pascal and IBM VS-COBOL. We give results showing the size of the structures
constructed by these parsers and the amount of searching required during the parse, which abstracts their runtime.
c© 2006 Elsevier B.V. All rights reserved.
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The computing literature contains plenty of experimental studies, but computer science, unlike traditional
experimental science, is poor at providing genuinely repeatable results. This arises partially from the rapid changes
in the underlying technology and partly from a natural desire of researchers to explore new fields rather than
comprehensively mapping the territory opened up by pioneers. Furthermore the complexity of computer systems
can make it difficult to define problems in a manner that allows comparative experimental approaches.

Compilers and formal language translators in general are perhaps our best candidate for combining formal rigour
with engineering practicality. It is forty years since the links were noted between Chomsky’s formalisms and the
engineering practice of language design and translator implementation; and nearly twenty years since the engineering
practice for parsing conventional programming languages settled on the use of LR style bottom up parsers, usually
based on LALR tables which are automatically generated, and the simpler LL(1) parsers which are often hand written.

LALR techniques admit a large subset of the deterministic languages and, with a little judicious use of prioritisation
to disambiguate table conflicts, the well known generators such as YACC [11] and its derivatives GNU Bison and
BTYACC [7] have reduced parser generation to a mostly clerical task. Nevertheless, users of these tools have to
grapple with the lack of generality of deterministic parsers, and it is our experience that both neophyte and experienced
language designers experience nasty surprises. Bottom up parsers, in particular, display behaviour that can be hard to
interpret in terms of the grammar. For example, YACC-like tools allow semantics to be specified within a production
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even though semantics execution is in reality associated with the reduction of an entire rule. YACC will silently split a
rule to support semantics execution, but in doing so may generate rules with LALR conflicts. The effect from a user’s
point of view is that a working parser breaks when semantics are added.

In the last decade the computing community has shown an increasing interest in parsing techniques that go
beyond the standard approaches. There are a plethora of parser generators that extend both top-down and bottom-
up approaches with backtracking and lookahead constructs. As we have noted elsewhere [12] such parsers can display
surprising pathologies: in particular parser generators such as PRECC [4], PCCTS [22], ANTLR [21] and JAVACC [1]
are really matching strings against ordered grammars in which the rule ordering is significant, and it can be hard to
specify exactly what language is matched by such a parser. In any case, backtracking yields exponential parse times
in the worst case.

A safer approach is to use one of the truly general context free parsing algorithms such as Earley [8], CYK [33]
or a variant of Tomita’s GLR algorithm [30]. Many of these algorithms are primarily recognisers which return data
structures from which derivations may be extracted one at a time. For ambiguous grammars this may be unacceptable
since the number of derivations is not necessarily finite, and no guarantees can be made about the order in which they
are extracted, hence the practical time bound may be dominated by the examination (and rejection) of semantically
unacceptable derivations.

Practical general algorithms display at least cubic worst case time behaviour but on modern hardware this
need not preclude their use. Several Eiffel compilers use Earley parsers to support their relaxed use of expression
separators. Tools such as ASF+SDF [31] stress generality and can parse ambiguous languages with support for shared
packed parse forests (SPPF) which efficiently encode all possible derivations along with sophisticated techniques
for disambiguating the forest. ASF+SDF uses GLR parsing to accomplish this: as a final indicator that general
techniques are entering the mainstream consider that even GNU Bison has recently acquired a general parsing mode.
(It turns out that the present Bison ‘GLR’ implementation merely splits stacks when conflicts are encountered, so it
displays exponential growth in memory requirements which makes it impractical; but the addition of this mode at
least demonstrates the demand for general parsing.)

In recent years we have studied a wide variety of general parsing techniques along with mechanisms for extracting
derivation forests; semi-automatic generation of abstract syntax trees; and dataflow analysis and code generation
techniques based on the resulting structures [14]. We ended up with a set of only loosely comparable tools: in
particular it was hard to answer what-if questions about parse-time performance and the size of the structures required
for particular techniques in particular application niches. The Grammar Tool Box (GTB) is a unifying framework
into which we can implement new theoretical contributions beside those already in the literature so as to allow direct
experimental comparisons as well as to act as a production quality translator generator. In this paper we shall use GTB
to describe the behaviour of three variants of GLR parsing: (i) Farshi’s original correction to Tomita’s non-general
algorithm; (ii) the Right Nulled GLR algorithm which provides a more efficient generalisation of Tomita and (iii) the
Binary Right Nulled GLR algorithm which achieves cubic performance on any context free grammar whilst retaining
linear time efficiency when parsing deterministic grammars. We present a guide to the parse-time behaviour of these
algorithms which illustrates the inefficiencies in conventional Farshi-style GLR parsing and exercise the three GLR
algorithms running with LR(0), SLR(1), LALR and LR(1) tables for ANSI-C, ISO-Pascal and IBM VS-COBOL.
We give results showing the size of the structures constructed by these parsers and the amount of searching required
during the parse, which abstracts their runtime.

1. The Grammar Tool Box (GTB) and Parser Animation Tool (PAT)

GTB is an interpreter for a procedural programming language with facilities for direct manipulation of translator
related data structures. A set of built-in functions is provided for creating, modifying and displaying these structures.
At the simplest level, the GTB language is used for scripting a standard process such as the generation of an SLR(1)
parse table. Unlike a conventional monolithic parser generator, GTB requires the generation process to be specified as
a detailed chain of operations on grammars and automata. Our goal is to open up the degrees of freedom in translator
implementation in a structured way so that reproducible experiments can be mounted between competing techniques.
Naturally, a pre-written GTB script may be used to get the effect of a conventional parser generator like YACC or
RDP, so GTB can replace those kinds of tools in a production environment.
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The Parser Animation Tool (PAT) [9] is an accompanying visualisation tool that has its own implementations of
our parser algorithms which run from tables generated by GTB. PAT is written in Java, and GTB in C++ so they
necessarily require separate implementations, but we have the added benefit of two authors constructing independent
programs from the theoretical treatment. As might be expected, reconciliation of results has sometimes revealed bugs.
In use PAT dynamically displays the construction of parse-time structures. PAT can also be used in batch mode to
generate statistics on parser behaviour: the results given in Section 4.3 were obtained in this way.

2. LR parsing fundamentals

The standard LR parsing approach was introduced by Knuth [17]. The idea is to construct a deterministic finite
state automaton (DFA) whose transitions are labelled with terminals and non-terminals from a context free grammar
and whose states are labelled with sets of grammar rules. The standard LR parser then uses a stack and an input string
to traverse the DFA. The state on the top of the stack is the current state. If there is a transition from this state labelled
with the current input symbol then the target of this transition is pushed onto the top of the stack and the current input
symbol is updated. This is referred to as a shift action. If the state at the top of the stack is labelled with a grammar
rule A ::= x1 . . . x j then the top j states are popped off the stack, leaving state h say on top, and then the target of
the transition labelled A from h is pushed onto the stack (it is a property of the DFA that such a transition will always
exist). This is referred to as a reduction action. The input is accepted if, when all the input has been read, the state
on the top of the stack is the accepting state of the DFA. (See, for example, [2] for a full discussion of standard LR
parsing.) Although the DFA itself is deterministic, the LR parsing process may not be. It is possible for there to be
both a shift and a reduction associated with a DFA state, and a DFA state may be labelled with more than one rule,
yielding a choice of reduction actions. These choices are called LR-parsing conflicts.

There are several classical classes of DFA which can be used as the basis of an LR parser, each constructed with
different uses of input symbol lookahead. The LR(0) DFA does not use lookahead, the SLR(1) DFA uses one symbol
of lookahead in a global fashion using the so-called follow sets, and the LR(1) DFA uses the lookahead symbols in
a more detailed fashion which takes account of the local properties of the grammar. The LALR DFA [6] is obtained
by merging some of the LR(1) DFA states. The classes of grammar whose LR(0), SLR(1), LALR, and LR(1) tables,
respectively, are conflict-free form a strict hierarchy under inclusion. The standard LR parsing algorithm requires that
there be no conflicts, thus using LR(1) DFAs permits the largest class of context free grammars to be parsed with the
technique. However, while for a given grammar the LR(0), SLR(1) and LALR DFAs are the same size, the LR(1)
DFA can be substantially larger.

2.1. LR tables in GTB

We follow Grune’s treatment [10] of LR DFA generation, both in our theoretical results and in the implementation.
Traditional treatments of LR parsers focus on the definition of the LR handle-finding automaton as a closure over sets
of items. In general an item is an ordered pair (S, F) where S is a ‘dotted’ position in the grammar and a lookahead
set representing those terminals which a parser may legally encounter during a parse. Setting F appropriately gives
an LR(0), SLR(1) or LR(1) automaton. In [10] these relationships are emphasised by writing the grammar rules as an
NFA in a natural way. The handle-finding DFA is then derived from this NFA by applying the subset construction.
We have found this approach useful both pedagogically and as a basis for theoretical analysis of LR parsers. As an
implementation method it is less attractive since the LR(1) NFA’s for some languages can be large and in our present
scheme must be co-resident with the DFA. Some ingenuity has been required to design internal representations for
the NFA that optimise the use of memory, and we do not rule out more direct construction techniques in GTB for
production use.

The following GTB example illustrates the definition of a (tiny) language. In the GTB input format grammar rules
are written in simple BNF, one rule for each non-terminal, terminals are single quoted strings and # represents ε. The
example shows the generation of all sentential forms in the language and the construction of the LR(1) DFA and parse
table via the construction of an NFA followed by the application of the subset construction. The NFA and DFA are
also output in a format which can be viewed using the VCG tool [24], as shown in Figs. 1 and 2.

S ::= ’a’ | A B | A ’z’.
A ::= ’a’.
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Fig. 1. Nondeterministic LR(1) automaton.

Fig. 2. Deterministic LR(1) automaton.

B ::= ’b’ | #.

(
this_grammar := grammar[S]
this_nfa := nfa[this_grammar lr 1 nullable_reductions]
render[open["nfa.vcg"] this_nfa]
lr1_dfa := dfa[this_nfa]
lalr_dfa := la_merge[lr1_dfa]
this_derivation := rnglr_parse[lalr_dfa "a b"]
render[open["ssg.vcg"] this_derivation]
write["\n" CPU_time " CPU seconds elapsed\n\n"]
)

GTB can handle multiple grammars simultaneously, and extract multiple grammars from a rule set by using
different start symbols (a facility which is useful for some techniques that segment grammars, such as the Aycock
and Horspool trie-based automaton [3]). The built-in function grammar constructs a grammar object from a particular
start rule and as a side effect calculates first and follow sets. Nondeterministic automata are constructed using the
nfa function. The types presently supported are LL, LR and the ‘unrolled’-LR automata used in our version of
Aycock and Horspool’s parsing algorithm [26]. Follow sets are specified with positive integers for right-hand-side
(instance-level) follow sets and negative integers for left-hand-side follows, so an unrolled SLR(1) table is obtained
with nfa[this_gram unrolled -1]. (In practice, we allow some sugared calls so nfa[this_gram slr 1] has
the expected effect.) An LR DFA is obtained by running the subset construction on one of these NFAs. An LALR
DFA can be constructed from an LR(1) DFA using the la_merge function. Once the DFA has been constructed the
required parsing algorithm can be run. For example, rnglr_parse runs an RNGLR parser, and outputs a GSS in a
format that can be viewed using VCG.
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3. GLR parsing

GLR parsing, an extension of LR parsing, was introduced by Tomita [30] as a means for natural language parsers to
capture all possible derivations when parsing potentially highly ambiguous grammars. Tomita-style GLR algorithms
extend the LR parsing technique to cope with conflicts, thus GLR parsers can use any of the LR DFAs. However,
we expect the efficiency of the GLR parser to be different on different types of DFA. The SLR(1) parser typically
encounters more conflicts and thus may generate more parser activity, but the LR(1) DFA contains more states and
thus the size of the runtime structures may be larger. In Section 4.3 we use GTB and PAT to investigate the effects of
different DFA types on GLR parsers. First we give an outline of the GLR algorithms we use.

Nondeterminism in an LR parser gives rise to multiple current stacks. Tomita’s algorithm constructs a graph
structured stack (GSS) that efficiently represents these stacks. Tomita’s approach centres around the processing of
states currently on the tops of the stacks. We think of the GSS nodes corresponding to these states as the current
frontier of the GSS, and the stacks are lock-stepped on shift actions so the GSS nodes fall into levels associated
with each input symbol. In detail, as each node u on the frontier is processed each reduction A ::= x1 . . . x j in the
corresponding state (if there are any) is applied down all paths of length j from u. This can cause new states to be
added to the frontier. When all the nodes on the frontier have been processed, a new frontier is begun by applying the
shift actions associated with the next input symbol.

We describe the GLR algorithm using as a running example the grammar, Γ1, whose rules are

S ::= a S B B | a B ::= b | ε

Here S and B are non-terminals, a and b are terminals, ε is the empty string, and S is the start symbol.
We shall use the LR(0) DFA for Γ1, shown below, but our discussion applies equally well to the SLR(1), LALR

and LR(1) DFAs. Traditionally DFA states are labelled with sets of items (see Section 3.5) but we have only shown
the reduction items. The start state is state 0 and the accepting state is state 1.
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The DFA will be traversed in the standard way, reading an input string, in this example aab, and pushing states
onto a stack. The first three steps of the algorithm, given in Section 3.1, illustrate the basic approach, including the
stack sharing in the GSS. The last step generates multiple pending actions and at that point we discuss, Section 3.2, the
use of work lists to manage the action application. The example has been chosen to illustrate the basic ideas, but there
are problems with the approach. We shall illustrate these, and their solutions, in Section 3.3 using the same grammar
with a different input string, aaa.

3.1. The basic approach

We traverse the above DFA for Γ1 with the input string aab.
We read the first input symbol, a, begin in the start state, 0, and construct a GSS node u0 labelled 0. There are no

reductions from state 0 so we traverse the a-labelled arrow, perform the shift action and push onto the stack the state,
2, which is the target of the a-arrow from 0. Thus we create a new GSS node u1 labelled 2 and an arrow from this to
u0 to indicate that 2 is above 0 in the stack. m m0 2� a

GSS Stack 0
2u0 u1

(The label a on the arrow is not really part of the GSS but it has been included to make the exposition clearer.) We
then read the next input symbol, a, and apply the reduction actions. State 2 includes a reduction using the rule S ::= a.
To apply this reduction we need to trace back along all paths of length 1 from the node u1, in this case we just get
node u0, and then create a new node u2 labelled 1 and an edge (u2, u0). This corresponds to duplicating the stack and
performing the corresponding pop and push operations.
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State 1 has no reductions so the frontier is complete and we apply the shift actions. There is an a-arrow from DFA
state 2 to itself, so we create a corresponding GSS node. There is no a-arrow from state 1 so the stack whose top is 1
dies. m m m
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Next we read the last input symbol, b. Applying the reduction from state 2 results in a GSS node u4 labelled 3.
State 3 includes a reduction using the rule B ::= ε, and the path of length 0 ends at u4, so we create a GSS node u5
labelled 5 and an edge (u5, u4). State 5 also includes a reduction using B ::= ε, so we create a GSS node u6 labelled
6. State 6 has a reduction using S ::= aSB B, so we find all paths of length 4 from u6. There is one such path which
ends at u0, and so we create a GSS node u7 labelled 1.
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We have now applied all the reductions from all of the current stack tops, so we apply the shift actions and read the
next input symbol which is the end-of-file symbol $. When we apply the shift action from state 3 we create a new GSS
node u8 labelled 4. When we apply the shift action from state 5 we find that there is already a GSS node labelled 4 on
the current frontier so we reuse this node. This is an example of the stack re-merging that we mentioned above.
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So far in this example we have only had one frontier node to be processed at a time and each reduction has been
applied down only one path, so we have not needed to address the book-keeping aspects of the process. To cope
efficiently with multiple reductions we use a work list.

3.2. Work lists

There is an important cost associated with the use of a GSS: in an LR parser a reduction is performed by popping j
states from the stack where j is the length of the rule being reduced. This can be performed with a single modification
of a stack pointer. In the GLR case a reduction involves a search down all pathways of length j , and in worst case
this can require O(2 j ) time. Thus it is important that the searches are only applied once, and this implies that the
algorithm must incorporate ‘work lists’ to ensure that previously carried out searches are not repeated. It is this
efficient construction of the GSS which is the important contribution of Tomita’s work.
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Reductions of length greater than zero are applied down paths. We could keep a list of the nodes that have been
created and then process each node, applying any reduction associated with the node down all the paths from the
node. The problem is that, as we shall see later, additional edges can be added to a node after it has been processed.
If we simply re-process the node we will retrace all the paths that we have already explored, as well as the new paths,
leading to an unnecessary explosion in the searching cost of the algorithm. Tomita’s approach is to keep a work list
of the reductions together with the first edge down which they are to be applied. Then when a new edge is created the
reductions are only applied down the new paths. In fact all we need to record is the length of the rule associated with
the reduction action, the non-terminal on the left hand side of the rule, and the node at the end of the first edge down
which the reduction is to be applied.

Thus we have a work list R which consists of triples (u, A, m) where u is a GSS node, A is the left hand side of a
grammar rule and m is the length of the rule. When a node v is created, if there are any rules B ::= ε associated with
this node then we add (v, B, 0) to R. When an edge (v, u) is created, if there are any rules A ::= x1 . . . xm , where
m ≥ 1, associated with v then we add (u, A, m) toR.

In addition we also keep a work list Q for the shift actions. The elements of Q are pairs (v, k) where v is a GSS
node and k is a (integer) DFA state number. When a node v labelled h is created, if there is an a-transition from h to
k, where a is the next input symbol, then (v, k) is added to Q. The algorithm operates by creating the start node u0
labelled 0 and then adding any appropriate elements toR and Q.

Continuing with our running example above, when the shift actions are applied which create the edges (u8, u4)

and (u8, u5), the elements (u4, B, 1) and (u5, B, 1) are added to R. When we remove (u5, B, 1) from R we find all
paths of length 1 − 1 = 0 from u5. This, of course, ends at u5 so we create a new GSS node, u9, labelled 6 and an
edge (u9, u5). State 6 has an associated reduction on the rule S ::= aSB B so on the creation of the edge (u9, u5) we
add (u5, S, 4) to R. Similarly removing (u4, B, 1) we create a new GSS node, u10, labelled 5, an edge (u10, u4) and,
since state 5 has a reduction on B ::= ε, on the creation of u10 we add (u10, B, 0) toR.
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Removing (u5, S, 4) we look for paths of length 3 from u5, and there is one which ends at u0. From this we create
a new node u11 labelled 1. Since there are no actions associated with state 1 no elements are added to R. We then
remove (u10, B, 0) fromR. There is already a node on the frontier labelled 6, u9, so we add an edge (u9, u10) and the
creation of this edge causes (u10, S, 4) to be added toR.
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When (u10, S, 4) is removed from R we look for paths of length 3 from u10. There is one which ends at u0. Since
there is already a frontier node, u11, labelled 1 and an edge (u11, u0) no new nodes or edges are created, and the list
R is empty. Since the input symbol is the end-of-string symbol, and there is a stack with the accepting state 1 on the
top (i.e. there is a node labelled 1 on the current frontier), the input string is (correctly) accepted.
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3.3. The failure of Tomita’s algorithm

Tomita’s basic algorithm [30], which we call Tomita-1, can be applied to all ε-free grammars. What we have
described above is essentially an extension of Tomita-1 to include ε-rules in the obvious way, and we call this algorithm
Tomita-1e. (Our formulation is slightly different from Tomita’s in that Tomita’s GSS included nodes for the grammar
symbols as well as the DFA states. Also, Tomita did not use the optimisation of starting the reduction path searches
from the second node on the path.)

The problem is that Tomita-1e does not always work correctly on grammars with hidden right recursion. Consider
again the above grammar Γ1, this time with the input string aaa.

Reading the first three input symbols and proceeding as above, after we perform the shift action associated with
the third a we have the following GSS and work listR.
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Removing (u3, S, 1) from R results in the creation of a GSS node u9 labelled 3 and an edge (u9, u3), and (u9, B, 0)

is added to R. When this element is removed we create u10 labelled 5 and the element (u10, B, 0), and then in turn
we create u11 labelled 6 and the element (u10, S, 4). Processing (u10, S, 4) we find the path of length three from u10
to u1 and we create an edge (u9, u1).
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Since state 3 has only a reduction of length 0, there are no elements added to R as a result of the creation of the edge
(u9, u1) thus the work lists R and Q are both empty and the process terminates. Since there is no node labelled 1 on
the current frontier, the input string is (incorrectly) rejected.

The problem is that the edge (u9, u1) creates a new path of length 4 from u11 and so the reduction S ::= aSB B
should be applied down this path. The method of storing reductions on a work list with the first edge of the path down
which they are to be applied only works if new paths are only created by adding edges at the front of existing paths.
Tomita was aware of this and modified his algorithm to try to ensure this property held, but the modification caused
the construction of an infinite GSS in certain cases. A different solution was proposed by Farshi [20].

3.4. Farshi’s algorithm

Farshi extended Tomita-1 to include ε-rules and added a brute force search to ensure that rules are correctly applied
down newly created paths. The algorithm uses slightly different work lists from those we have described. There is a
work list A of frontier nodes waiting to be processed, and when a node is created it is added to A. When a node v,
whose label is h say, is removed fromA, if there is a DFA transition from h to k labelled with the current input symbol
then, as for Tomita-1e, the pair (v, k) is added to a work list Q.

Reduction actions are treated slightly differently. For each rule D ::= x1 . . . xm in state h (if there are any) all the
GSS nodes at the ends of paths of length m from v are found and for each such node w the pair (w, D) is added toR.
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There is a state, t say, which is the target of an D-transition from l, where l is the label of w, and when (w, D) is
removed from R, if there is no frontier node labelled t , then one is created and added to A, and an edge is created
from this node to w.

Farshi’s approach results in the frontier nodes being created in a different order to Tomita’s but the method is
essentially the same and it does not solve the basic problem with Tomita’s algorithm. To address this Farshi added
an additional step to the processing part of his algorithm. A new edge in the middle of an existing path can only be
created when processing an element (w, D) fromR. Thus there is an additional instruction when such an edge, (u, w)

say, is created. This instruction says:

If an edge (u, w) is created from an existing node u, then for each node v on the current frontier which is not in
A, for each rule B ::= x1 . . . x j associated with v, and for each path of length j from v which includes the edge
(u, w), add (y, B) toR, where y is the node at the end of the path.

This does solve the problem with Tomita’s algorithm, but at a very high cost. Farshi’s algorithm does not say
how paths which include a particular edge are to be found, and in the limit, all paths of length j must be re-traced
to determine whether or not they contain the edge. This is exactly the potentially explosive repeated searching that
Tomita’s algorithm was designed to avoid.

We illustrate Farshi’s approach by returning to the above example and the string aaa, at the point where the shift
on the third a is applied. The node u8 is created and added toA. This node is removed and, for the rule S ::= a which
is associated with state 4, Farshi’s algorithm finds the nodes at the end of paths of length 1 from u8, in this case u3,
and adds (u3, S) to R. Next (u3, S) is removed from R and processed. This results in the creation of u9 labelled 3,
which is added to A, and the creation of the edge (u9, u3).

Now u9 is removed fromA and, because B ::= ε is associated with state 3, we add (u9, B) toR. When this element
is removed a node u10 labelled 5 is created. When u10 is processed (u10, B) is added to R, and then processing this
results in the creation of u11 labelled 6 and the edge (u11, u10). When u11 is processed, because S ::= aSB B is
associated with state 6, we find the nodes at the end of paths of length 4 from u11 and hence add (u1, S) toR.
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When (u1, S) is processed we find that there is already a node u9 labelled 3, so we just create an edge (u9, u1).
At this point the additional step in Farshi’s process is triggered. The nodes u8, u9, u10 and u11 are no longer in A,
thus paths of length 1 from u8 and of length 4 from u11 are looked for again. The path from u8 and one of the paths
from u11 do not contain the new edge, so no elements are added to R. But we also find an additional path of length
4 from u11 which does contain (u9, u1). The end of this path is u0 so (u0, S) is added to R. Thus we have found the
extra reduction application that Tomita’s algorithm missed, but note that in the process we have had to trace one of
the paths of length 4 from u11 twice.

Finally removing (u0, S) from R we create a new frontier node u12 labelled 1 and an edge (u12, u0). At this point
all of the work lists are empty so the algorithm terminates and, since there is a frontier node labelled 1, the algorithm
(correctly) accepts the input string.

In this example, Farshi’s modification only required two paths, one of length 4 and one of length 1, to be traversed
twice. But it is not hard to see that on the input string aaaa a similar pattern will appear but two extra edges will be
added to the node labelled 3 on the last frontier. The creation of the second edge will cause a path of length 4 to be
retraced, and the creation of the third will cause two paths of length 4 to be retraced. Thus we will have a total of four
extra length 4 path traversals. For input aaaaa the total is 10, and so on.

In the above discussion we have described Farshi’s algorithm as it is described in [20]. Of course we can limit the
length of the re-searching carried out using some observations about the creation of new edges. As written, Farshi’s
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algorithm requires us to search for all paths containing the new edge. However, the structure of the algorithm ensures
that any new edge will have its source node on the current frontier. Thus when searching for new paths which contain
the edge we can terminate the search down each path when we reach a node which is not on the current frontier.

In our experiments we have implemented Farshi’s algorithm exactly as it is described in [20], and we have also
implemented a more efficient version which truncates the searches as described above. We refer to the former as
Farshi-naı̈ve and the latter as Farshi-opt, and we have presented the results for both of these algorithms.

3.5. The RNGLR algorithm

The RNGLR algorithm [27] provides a different solution to the problem with Tomita-1e, which involves changing
the DFA rather than the algorithm.

If an edge (u, w) is added to an existing GSS node u, then u is on the current frontier. So if there is a path
u j , . . . , u p, u, w, u p−3, . . . , u1 in the GSS then u j , . . . , u p are also on the current frontier. It is not too hard to see

that if a reduction A ::= x1 . . . x j has to be applied down this path then we must have xr
∗
⇒ε, for p ≤ r ≤ j . Thus

rather than applying the reduction A ::= x1 . . . x j from the node u j we apply the reduction A ::= x1 . . . x p−1 from
u. One of the beauties of this approach is that it can be achieved simply by adding some extra reductions to the DFA
states.

The standard DFA construction process labels the DFA states with items which are grammar rules with a ‘dot’
on the right hand side. The rules that we have associated with the states in the above description have the dot at the
end, A ::= x1 . . . x j ·, and our additional rules have the dot at the point where the limited reduction is to be applied,
A ::= x1 . . . x p · x p . . . x j . We call the DFAs with these additional reductions right nulled (RN) DFAs. They are con-
structed in exactly the same way as traditional LR DFAs, and then additional items are nominated as reduction items.

The RN LR(0) DFA for the grammar Γ1 in our running example is
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To illustrate the effect of the RN DFA we consider again the above example and the string aaa, and take up the
process at the point where the shift on the third a is applied.

Again the node u8 and edge (u8, u3) are created, causing (u3, S, 1) to be added to R. When this element is
removed from R a node u9 labelled 3 and an edge (u9, u3) are created and, because both B ::= ε and S ::= aS · B B
are associated with state 3, (u9, B, 0) and (u3, S, 2) are added to R. (It is the addition of the latter element which
allows the parser to eventually terminate correctly.)

As in the previous cases, processing (u9, B, 0) causes a node u10 labelled 5 to be created, and as a result (u10, B, 0)

and (u9, S, 3) are added to R. Processing (u3, S, 2) requires us to look for paths of length one from u3, and there is
one which ends at u1. Since there is already a frontier node labelled 3 we just add a new edge (u9, u1) and then an
element (u1, S, 2) toR.m m m m
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R = ( (u10, B, 0), (u9, S, 3), (u1, S, 2) )

Processing (u10, B, 0) creates a node, u11, labelled 6 and causes (u10, S, 4) to be added toR. Processing (u9, S, 3),
we look for nodes at the end of paths of length 2 from u9. We find u1 and u0. An edge to u1 of the required type already
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exists so we take no further action. For u0 we create a frontier node u12 labelled 1. Finally, processing (u1, S, 2) and
(u10, S, 4) does not result in any new GSS edges, so the process is complete and has constructed the same final GSS
as Farshi’s algorithm did.

In fact it turns out that because we have added the additional reductions it is not necessary to apply any of the
reductions down paths whose first edge lies between two nodes on the current frontier. This is because a limited
version of the reduction will be applied at an earlier point in the algorithm. This allows us to present a slightly different
version of Tomita-1e which does not require any additional searching, and in fact is even slightly more efficient than
Tomita-1e. (Specifically, in the above example the elements (u9, S, 3) and (u10, S, 4) will not actually be added to
R.) We call this algorithm the RNGLR algorithm, and the RNGLR approach is discussed in detail in [27] and [28].

For completeness we include, without further discussion, the formal version of the RNGLR algorithm.

Input: an RN DFA written as a table T , an input string a1 . . . ad

PARSER {

if d = 0 { if acc ∈ T (0, $) report success else report failure }

else {

create a node v0 labelled with the start state 0 of the DFA.
set U0 = {v0}, R = ∅, Q = ∅, ad+1 = $, U1 = ∅, ..., Ud = ∅

if pk ∈ T (0, a1) add (v0, k) to Q
forall r(X, 0) ∈ T (0, a1) add (v0, X, 0) to R
for i = 0 to d while Ui 6= ∅ { while R 6= ∅ { REDUCER(i) }

SHIFTER(i) }

if the DFA final accepting state is in Ud report success else report failure }}

REDUCER(i) {

remove (v, X, m) from R
find the set χ of nodes which can be reached from v along a path of

length (m − 1), or length 0 if m = 0
for each node u ∈ χ do {

let k be the label of u and let pl ∈ T (k, X)

if there is a node w ∈ Ui with label l {

if there is not an edge from w to u {

create an edge from (w, u)

if m 6= 0 { forall r(B, t) ∈ T (l, ai+1) where t 6= 0, add (u, B, t) to R }}}

else {

create a node w ∈ Ui labelled l and an edge (w, u)

if ph ∈ T (l, ai+1) add (w, h) to Q
forall r(B, 0) ∈ T (l, ai+1) add (w, B, 0) to R
if m 6= 0 { forall r(B, t) ∈ T (l, ai+1) where t 6= 0, add (u, B, t) to R }}}}

SHIFTER(i) {

if i 6= d {

Q′
= ∅

while Q 6= ∅ {

remove an element (v, k) from Q
if there is w ∈ Ui+1 with label k {

create an edge from (w, v)

forall r(B, t) ∈ T (k, ai+2) where t 6= 0 add (v, B, t) to R}

else { create a node, w ∈ Ui+1 labelled k and an edge (w, v)

if ph ∈ T (k, ai+2) add (w, h) to Q′

forall r(B, t) ∈ T (k, ai+2) where t 6= 0 add (v, B, t) to R
forall r(B, 0) ∈ T (k, ai+2) add (w, B, 0) to R}}

copy Q′ into Q }}
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3.6. The BRNGLR algorithm

The Tomita-1e and RNGLR algorithms are of worst case order O(nk+1) where k is the length of the longest rule
in the grammar, and the order of Farshi’s algorithm can be even higher. The run-time costs come from the fact that in
the limit there can be mk paths of length k from a node on the mth frontier and these paths must all be traversed when
a reduction is carried out.

It is possible to turn the RNGLR algorithm into a cubic algorithm by performing the searches for paths of length
k in k − 1 steps of length 2. For example, in the basic RNGLR algorithm if an edge is the first edge of mk−1 paths
from a node then it can be traversed mk−1 times. Traversing the paths in steps of length two ensures that each edge is
only traversed at most O(n) times for an input sting of length n. We call this two step version the (Binary) BRNGLR
algorithm, and it is described in detail in [25]. Below, we use GTB to compare the performance of the Farshi, RNGLR
and BRNGLR algorithms.

3.7. From recognition to parsing

Tomita designed his algorithms to allow straightforward generation of an SPPF, a representation of the (potentially
infinite) set of derivation trees for an input string. It is possible for derivation tree generation to significantly increase
the run-time cost and space requirements of a recognition algorithm, but Tomita designed the SPPF generation to be
as efficient as the recogniser part of the algorithm. In particular, Tomita’s GSS nodes have intervening ‘symbol’ nodes
which correspond to nodes in the SPPF.

Farshi described only a recogniser version of his algorithm. Rekers [23] turned Farshi’s algorithm into a parser in
which the GSS edges are labelled with SPPF nodes. Visser [32] uses a generally similar approach but incorporates
lexical processing directly into the parser and its associated GSS and SPPF. The RNGLR algorithm uses Rekers’
approach to SPPF generation because, although requiring a little more searching, Rekers’ approach results in more
compact SPPFs, see [27] for more discussion of this. In Section 4.3 we report on the both the GSS and SPPF sizes.

4. Experiments

The complete tool chain for these experiments comprises ebnf2bnf, a tool for converting extended BNF grammars
to BNF under the control of annotations that specify the type of expansion to be applied; GTB which is used to
analyse grammars and construct tables and PAT which is used to animate algorithms and generate statistics on parse-
time structure size. We report results for Pascal, C and COBOL along with small grammars that display pathological
behaviour with some algorithms.

4.1. Grammars for ISO-Pascal, ANSI-C and COBOL

Pascal and C typify the top down and bottom up schools of language design. In the folklore at least, Pascal is
thought of as being designed for LL(1) parsing and C for LALR parsing. In practice, Pascal is indeed reasonably close
to LL(1) notwithstanding the IF-THEN-ELSE ambiguity and the need for lexical backtracking to distinguish between a
real literal (2.3) and an integer range 2..3. C is essentially parsable by LALR parsers, but was not initially designed
that way. The LALR ANSI-C grammar was only written by Tom Penello in about 1983. Bjorn Stroustrup described
at some length the difficulties involved in attempting to build parsers for early versions of C++ using a hybrid of
YACC and a lexer containing ‘much lexical trickery relying on recursive descent techniques’ [29, pp 68–69,103].
Those of us interested in generalised parsing should perhaps be grateful for C++’s nondeterministic syntax since it
has clearly stimulated the development of tools such as ANTLR and the GLR mode of Bison. COBOL’s development
was contemporary with that of Algol-60 and thus pre-dates the development of deterministic parsing techniques. The
language has a large vocabulary (some 400 terminals depending on variant) which can challenge any table based
parsing method.

For these experiments we have used the grammar for ISO-7185 Pascal extracted from the standard, the grammar for
ANSI-C extracted from [15] and a grammar for IBM VS-COBOL developed in Amsterdam. The original extraction
of this grammar is described at length in [18] and some interesting work on techniques to generate tolerant variants
is described in [16]. A version of the grammar is available as a hyperlinked browsable HTML file at http://www.cs.
vu.nl/grammarware/browsable/vs-cobol-ii/: we used a version prepared for ASF+SDF from which we extracted the
context free rules.

http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/
http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/
http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/
http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/
http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/
http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/
http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/
http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/
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In all three cases we have suppressed lexical level productions and used separate tokenisers to convert source
programs into strings of terminals from the main grammar, so for instance the Pascal fragment

program tree_file(input, output) ;
const MAX_INTSETS = 200 ; MAX_TREES = 200 ;
function intset_create(var s : intset) : intset_sig ;

is tokenised to

program ID ( ID , ID ) ;
const ID = INTEGER ; ID = INTEGER ;
function ID ( var ID : type_ID ) : type_ID ;

For Pascal, our source was a tree viewer program which has approximately 5000 tokens; for ANSI-C a Boolean
equation minimiser of about 4500 tokens; and for COBOL, strings of approximately 2000 tokens extracted from the
test set supplied with the grammar.

4.2. EBNF to BNF conversion issues

Our source COBOL and Pascal grammars are specified using variants of EBNF, that is, BNF supplemented by
regular expressions. The browsable COBOL grammar also includes permutation phrases [5] which are used to express
free-order constructs in which each phrase may appear at most once: in the ASF+SDF version these are mapped to
Kleene closure over the permutation phrases with the assumption that semantic checks will weed out strings with
multiple occurrences of a phrase.

The standard LR table construction algorithms do not support regular expressions within rules, so EBNF rules must
be converted to BNF. In general there are many ways to do this and not all approaches yield the same size of table or
the same amount of parse time stack activity. As a trivial example consider the expansion of Kleene closure to BNF.
Left recursive rules are handled efficiently by LR parsers but right recursive rules generate extra stack activity. On the
other hand, left recursive rules cause nontermination in LL parsers, so in that case right recursion is mandatory.

One sometimes sees discussions on the size of parse tables for languages. To make realistic comparisons we need
to know both the full provenance of the grammar, and the way that it has been massaged into a form acceptable to the
tools from which measurements have been taken.

The IBM VS-COBOL grammar is salutary. Our first attempt expanded all closures by creating a new left-recursive
nonterminal for each closure. GTB ran out of memory when trying to create an LR(1) NFA for this grammar. Simple
back-substitution for head and tail recursive rules generated an NFA with 1.4 million nonterminal headers. Applying
a broader set of substitutions yields an NFA with only 21,000 headers.

Clearly, a mechanism for applying transformations in a way that can be audited by grammar users is needed:
starting with a standard grammar is helpful but not if we then perform a series of ad hoc operations as we remove the
EBNF syntactic sugar which can cause the size of our automata to vary by nearly two orders of magnitude.

We use a separate tool ebnf2bnf to perform these conversions which takes as input an (E)BNF grammar annotated
with expansion operators and outputs an (E)BNF grammar. The tool constructs a rules tree from the original grammar
and then performs tree transformations under the control of the annotations, before writing the grammar back out.
An ambitious environment that supports this kind of operation has been prototyped in ASF+SDF [19]: the authors
describe EBNF to BNF conversion as Yacc-ification. Our tool emphasises ease-of-use and traceability of the basic
operations.

4.3. Results

We run our experiments on grammars as described above for Pascal, C, and COBOL, and on the grammar Γ1 from
Section 3. The latter grammar displays much worse behaviour on the LR(0) DFA than on the SLR(1) and LR(1) DFAs,
illustrating the potential effects of using lookahead to improve efficiency, even when the parsing technique does not
require lookahead to ensure determinism. We also consider two minor variants of Γ1 which illustrate situations in
which LR(1) is a much better choice than SLR(1), and in which all three DFA types are equally bad.

Γ2 : S ::= T | b T a T ::= a T B B | a B ::= b | ε

Γ3 : S ::= T a T ::= a T B B | a B ::= b | ε
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Table 1
The size of LR and RNLR parse tables

Pascal ANSI-C COBOL

LR(0)/SLR(1)/LALR 434 × 286 383 × 158 2692 × 1028
LR(1) 2608 × 286 1797 × 158 –

Table 2
The number of conflict cells in LR and RNLR parse tables

Pascal ANSI-C COBOL

LR(0)/RNLR(0) 768/4097 414/414 131,506/167,973
SLR(1)/RNSLR(1) 1/242 88/88 65,913/73,003
LALR/RNLALR 1/233 75/75 –
LR(1)/RNLR(1) 2/1104 421/421 –

Table 3
The size of GSS and SPPF structures

RNGLR/Farshi BRNGLR RNGLR/Farshi BRNGLR
GSS edges GSS edges SPPF edges SPPF edges

Pascal LR(0) 31,015 34,441 35,350 38,770
Pascal SLR(1) 21,258 23,826 23,325 25,891
Pascal LALR 21,258 23,826 23,325 25,891
Pascal LR(1) 21,135 23,655 23,050 25,572
C LR(0) 39,389 41,748 40,454 42,800
C SLR(1) 28,604 30,670 29,033 31,092
C LALR 28,476 30,542 28,906 30,956
C LR(1) 28,477 30,512 28,761 30,797
COBOL LR(0) 23,002 26,461 24,792 29,342
COBOL SLR(1) 13,512 14,517 12,204 13,167

We consider first the size of the parse tables required for our three large grammars. For a given combination of
grammar and LR NFA the deterministic handle finding automata, and thus the tables, will be the same size for both
RN- and conventional Knuth-style reductions. In general the RN tables will contain far more conflicts, which might
be expected to generate more searching during GSS construction. It turns out that the RNGLR algorithm short-circuits
these extra searches, as we shall see. Table 1 shows the sizes of the tables given as the number of rows (states) by
the number of columns (grammar symbols), and Table 2 shows the number of table cells with conflicts (multiple
entries). As an aside, the LR(1) tables sometimes show more conflict cells than the SLR(1). This is because the LR(1)
DFA contains multiple copies of a given SLR(1) DFA state, corresponding to different local follow sets. The tables
for ANSI-C show a perhaps unexpectedly high number of conflicts for a grammar that is known to produce only
one conflict with YACC: however that result relies on the use of the so-called C lexer hack which maps type names
defined by typedef statements to a special token. Our figures here relate to the grammar used as-is without any
lexical trickery.

COBOL has a large alphabet and requires more than seven times as many states as ANSI-C even for LR(0) and
SLR(1) tables. In fact, our LR(1) table generator ran out of memory when processing COBOL, so we leave those
entries empty. We can also see that this COBOL grammar is highly nondeterministic, reflecting the construction
process described in [18].

We now consider the size of the GSS and SPPF structures. The Farshi and RNGLR algorithms generate the same
structures. The binary BRNGLR algorithm achieves cubic run times but at the cost of a worst-case constant factor
increase in the size of the structures. That is, the asymptotic space requirements of RNGLR and BRNGLR algorithms
are the same, but for any grammar with productions greater than two symbols long the BRNGLR algorithm introduces
additional nodes into both the GSS and SPPF. Table 3 shows expansions of between 5 and 20% in the size of the
structures.
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Table 4
GSS size for pathological grammars

Γ1, a20 Γ2, a20 Γ3, a20 Γ1, a1000 Γ2, a1000 Γ3, a1000

LR(0) 268 288 306 503,498 504,498 505,496
SLR(1) 42 269 266 2,002 503,499 503,496
LR(1) 44 45 300 2,004 2,005 505,490

Table 5
Performance

GSS edge visits Farshi-naı̈ve Farshi-opt RNGLR BRNGLR

Pascal LR(0) 41,460 38,964 8,556 8,550
Pascal SLR(1) 25,753 24,100 5,665 5,663
Pascal LALR 25,753 24,100 5,665 5,663
Pascal LR(1) 23,305 22,459 5,572 5,570

C LR(0) 42,707 42,251 5,184 5,180
C SLR(1) 30,235 29,940 4,502 4,498
C LALR 30,096 29,801 4,502 4,498
C LR(1) 30,754 30,484 4,450 4,446

COBOL LR(0) 139,187 103,120 10,056 9,554
COBOL SLR(1) 47,464 38,984 3,581 3,487

Γ1 LR(0) 334,831,502 168,664,502 499,500 499,500
Γ1 SLR(1) 1,001,998 503,497 999 999
Γ1 LR(1) 1,000,001 502,498 999 999

Γ2 LR(0) 334,832,502 168,665,502 499,500 499,500
Γ2 SLR(1) 334,831,503 168,664,503 499,500 499,500
Γ2 LR(1) 1,000,001 502,449 999 999

Γ3 LR(0) 335,831,500 169,165,999 500,499 500,499
Γ3 SLR(1) 333,829,507 168,161,008 498,502 498,502
Γ3 LR(1) 332,833,504 167,662,508 498,502 498,502

As we apply stronger parsing techniques, there is a potential trade-off between the amount of nondeterminism in
the table and the size of the GSS. Some early reports from the natural language processing community suggest that
LR(1) based GSSs would be much larger than SLR(1) ones because the number of states is so much larger, and in
the limit the number of nodes in a GSS is bounded by the product of the number of table states and the length of the
string. However, not all states will be populated, and our figures show that in practice LR(1) GSSs are a little smaller
than their SLR(1) equivalents. Of course, the LR(1) tables themselves are usually much bigger than SLR(1) tables (by
a factor of 4.6 for ANSI-C) so the rather small reduction in GSS size might only be justified for very long strings.
ASF+SDF uses SLR(1) tables.

However, relatively simple grammars can show pathological behaviours. Table 4 shows the different sizes of GSS
for the three types of DFA on the grammars Γ1, Γ2 and Γ3 for two input strings a20 and a1000. The figures are the
number of edges in the GSS generated by the RNGLR and Farshi algorithms, and we see that while for Γ1 the SLR(1)
DFA is comparable with the LR(1) DFA, for Γ2 the LR(1) DFA is better, and for Γ3 the LR(0) DFA based parser is
comparable with the other two.

Now we turn to performance. As we have already discussed in Section 3, the asymptotic time order of the
algorithms is dominated by the search time in the GSS associated with reductions. We count the number of times
each edge is visited during a search, and present here the sum over all these individual edge counts, which abstracts
the total amount of searching performed in each run. Table 5 presents figures for four algorithms: BRNGLR, RNGLR
and two variants of Farshi’s algorithm described in Section 3.4. The figures for Γ1, Γ2 and Γ3 are for the string a1000.
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We see clear performance advantages arising from the RNGLR algorithm, both for the small grammars and for
COBOL where there is an order of magnitude difference in the search costs. We also see that the difference between
SLR(1), LALR and LR(1) is insignificant for Pascal and C, but Γ2 shows the massive differences in run time costs
that can be made by using an LR(1) grammar in some circumstances.

5. Conclusions and acknowledgements

GTB has allowed us to make direct comparisons between three different GLR-style algorithms and four types
of LR table. To summarise: for typical (mostly deterministic) grammars the results show that performance is rather
insensitive to the choice between LR(1), LALR and SLR(1) tables. The RNGLR algorithm shows very significant
improvements over the traditional Farshi approach, and (although not demonstrated here) BRNGLR offers further
improvements for grammars which trigger supra-cubic behaviour in the RNGLR algorithm [13].

For Pascal the RNGLR algorithm shows a factor greater than 4 improvement over Farshi’s algorithm regardless of
table type; for ANSI-C better than 6.5 and for COBOL better than 10. These are very encouraging results although
they represent only a few sample input strings. The BRNGLR begins to show further significant improvements over
RNGLR in the case of the COBOL grammar; but we should note that the overheads for this algorithm are higher and
so the improvement may only be real for very long input strings.

With regard to table choice, in all cases the LR(1) table resulted in smaller and faster run-time parsers, but the
improvement over LALR is marginal, and indeed even the SLR(1) tables yield results within a few percent of the
LR(1) figures. The LR(1) tables are, of course, significantly larger.

The size of the structures is only one indication of performance. We expect SLR(1) GLR parsers to perform more
reduction searches than LR(1) because of the reduced lookahead resolution. In fact, for the limited examples here
we find that LR(1), LALR and SLR(1) parsers perform very similar numbers of edge visits. The Pascal and ANSI-C
grammars are mostly deterministic whatever the parsing model, so we should not be too surprised by this. We would
expect more non-deterministic grammars to show divergent results, favouring the LR(1) model as shown clearly by
the results for Γ2.

Given the relative insensitivity to table type of parse-time space and time requirements for current conventional
programming language grammars, the evidence presented here indicates that users should deploy either SLR(1) or
LALR tables depending on which is most convenient for them, and only use LR(1) tables for very long strings where
the (small) improvement in the size of the parse time structures outweighs the increased table size.

We are very grateful to Steven Klusener and Ralf Laemmel for allowing their IBM VS-COBOL grammar to be
used here; to Mark van den Brand for helpful discussions on GLR parsing and application to COBOL reengineering;
to Georg Sander for his VCG graph visualisation software and for allowing it to be distributed with our toolkits; and
to the anonymous referees for their many helpful suggestions.
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[19] Ralf Lämmel, Guido Wachsmuth, Transformation of SDF syntax definitions in the ASF + SDF Meta-Environment, in: Mark van den Brand,

Didier Parigot (Eds.), Proceedings of the First Workshop on Language Descriptions, Tools and Applications, LDTA’01, Genova, Italy, 7 April
2001, Satellite event of ETAPS’2001, in: ENTCS, vol. 44, Elsevier Science, 2001.

[20] Rahman Nozohoor-Farshi, GLR parsing for ε-grammars, in: Masaru Tomita (Ed.), Generalized LR Parsing, Kluwer Academic Publishers,
Netherlands, 1991, pp. 60–75.

[21] Terence Parr, ANTLR home page. http://www.antlr.org, Last visited: December 2004.
[22] Terence John Parr, Language translation using PCCTS and C++, Automata Publishing Company, 1996.
[23] Jan G. Rekers, Parser generation for interactive environments. Ph.D. Thesis, Universty of Amsterdam, 1992.
[24] Georg Sander, VCG Visualisation of Compiler Graphs, Universität des Saarlandes, 66041 Saarbrücken, Germany, February 1995.
[25] E.A. Scott, A.I.C. Johnstone, G.R. Economopoulos, BRN-table based GLR parsers, Technical Report TR-03-06, Computer Science

Department, Royal Holloway, University of London, London, 2003.
[26] Elizabeth Scott, Adrian Johnstone, Generalised bottom up parsers with reduced stack activity, The Computer Journal 58 (5) (2005) 565–587.
[27] Elizabeth Scott, Adrian Johnstone, Right nulled GLR parsers, ACM Transactions on Programming Languages and Systems (in press).
[28] Elizabeth Scott, Adrian Johnstone, Shamsa Sadaf Hussain, Tomita-style generalised LR parsers, Technical Report TR-00-12, Computer

Science Department, Royal Holloway, University of London, London, December 2000.
[29] Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley Publishing Company, 1994.
[30] Masaru Tomita, Efficient Parsing for Natural Language, Kluwer Academic Publishers, Boston, 1986.
[31] M.G.J. van den Brand, J. Heering, P. Klint, P.A. Olivier, Compiling language definitions: The ASF + SDF compiler, ACM Transactions on

Programming Languages and Systems 24 (4) (2002) 334–368.
[32] Eelco Visser, Syntax definition for langauge prototyping. Ph.D. Thesis, Universty of Amsterdam, 1997.
[33] D.H. Younger, Recognition of context-free languages in time n3, Information and Control 10 (2) (1967) 189–208.

http://www.antlr.org

	Evaluating GLR parsing algorithms
	The Grammar Tool Box (GTB) and Parser Animation Tool (PAT)
	LR parsing fundamentals
	LR tables in GTB

	GLR parsing
	The basic approach
	Work lists
	The failure of Tomita's algorithm
	Farshi's algorithm
	The RNGLR algorithm
	The BRNGLR algorithm
	From recognition to parsing

	Experiments
	Grammars for ISO-Pascal, ANSI-C and COBOL
	EBNF to BNF conversion issues
	Results

	Conclusions and acknowledgements
	References


