

BOINC Workshop 11

PARALLEL EXECUTION
IN VOLUNTEER ENVIRONMENT

Hien Nguyen, Eshwar Rohit

University of Houston

Supervisors:

Dr. Jaspal Subhlok

University of Houston

Dr. David P. Anderson

SSL – U.C, Berkeley

RESEARCH GOAL

Enable BOINC to efficiently support apps that require interprocess communication.

⇔Goals:

- **≻**Easier programming for communicating applications
- > Reduce execution time (not increase throughput)

Example Applications

REMD Protein Folding application

Each process runs a standard molecular simulation at different temperature

Example Applications

- Or many other applications:
 - Differential equation solvers (grid) (synchronous)
 - Game playing with alpha/beta pruning (asynchronous)
 - > Search application.
 - **>**
- **❖ Suitable applications: low to moderate amount and frequency of communication.**

DIFFICULTIES

OUTLINE

- 1. Volpex Dataspace
 - IPC for volunteer environment
- 2. Ensuring Efficiency
 - Process management
 - Host selection
- 3. Experiments And Evaluation
- 4. Future Work

Volpex Dataspace

❖Dataspace: global shared space that processes can use for information exchange without a temporal or spatial coupling.

Volpex Dataspace – Fault Tolerance

replicated

Volpex DSS is unique in supporting redundant Put/Get operations

Related Work: Volpex MPI

❖Volpex MPI:

- >An MPI library designed for executing parallel applications in volunteer environment.
- > Direct communication between processes.
- >Key Features
 - Controlled redundancy
 - Receiver based direct communication
 - Distributed sender based logging

More detail: "VolpexMPI: an MPI Library for Execution of Parallel Applications on Volatile Nodes" by Troy LeBlanc, Rakhi Anand, Edgar Gabriel, and Jaspal Subhlok.

ENSURING EFFICIENCY

Parallel program executes at the speed of the slowest process

- Process management
 - >Simultaneous process starting
 - > Failure and recovery
 - > Replica management
 - >Checkpoint/restart
- Host selection.
- Integrated with BOINC

Job execution scheme

- Simultaneous process starting:
 - >All processes start computation together
 - **≻Volpex** jobs have highest (infinite) priority: uninterruptible by other jobs.
 - ➤ While waiting for all processes of a Volpex job to be ready: host can do other finite priority volunteer jobs.
 - >Use of boinc_temporary_exit()

- Failure and recovery
 - ➤ Dead instance spotted by heartbeat mechanism: process instances regularly send heartbeat to Volpex DSS.
 - >Slow instance detected when very old checkpoint commit attempted.
 - > "Hot Spare" replaces the dead/slow process. Degree of replication maintained.

Checkpointing:

- ➤ Process instance commits and uploads checkpoints to Volpex DSS (only stores latest checkpoint for each process).
- Volpex_time_to_checkpoint()
 Volpex_checkpoint(char* checkpoint)
- ➤ Restarted process instance requests checkpoint from Volpex DSS.

HOST SELECTION POLICY

- Criteria for selecting volunteer hosts to assign to a Volpex job:
 - >CPU speed
 - > Memory capacity
 - **≻**Disk space
 - >Upload bandwidth
 - > Predicted availability

HOST SELECTION POLICY

- Future availability prediction based on
 - > Last valued predictor: availability in the last hour
 - > Predictability: the number of availability changes in the past 2 weeks.
- In essence: select hosts which change availability very rarely.
- ❖ Method partly based on: Exploiting Non-Dedicated Resources for Cloud Computing Artur Andrzejak, Derrick Kondo, David P. Anderson. (NOMS10)
 Hien Nguyen University of Houston

IMPLEMENTATION STATUS

- Volpex utilities: for scientists to submit, abort or query status of a Volpex job.
- Modified BOINC scheduler: includes host selection for Volpex job.
- Modified Volpex DSS: handles new type of requests, manages application execution.

EXPERIMENTS AND EVALUATION

- **Experiment Scheme:**
- >Application: Sieve of Eratosthenes, REMD Protein Folding
- **➤ Number of processes: 10 for Sieve and 16 for Folding**
- **≻Level of replication: 1, 2, 3**
- **≻Pool of around 80 nodes: On campus & global**
- **≻**Host Selection Policies:
 - ○Random/Naïve
 - Minimum threshold on CPU, memory, diskspace, upload bandwidth and predicted availability

Sieve of Eratosthenes

Replication helps reduce variability in job's execution time

Sieve of Eratosthenes

On Campus hosts with IP filtering 10 Processes

For on-campus nodes, replication does not have remarkable effect.

Sieve of Eratosthenes

Minimum threshold for host selection helps stabilize the execution time even w/o replication.

FUTURE WORK

- **❖More experiments:**
 - > Higher number of processes
 - More applications
 - Communication pattern (local/global, synch/asynch)
 - > Size and frequency of communication
- More in depth study on:
 - > Host selection policy
 - Optimal checkpoint interval
- Granting credits to hosts:
 - > Granting credit to hot spares
 - Granting credit to host that fails mid-way

If you have application?

We would be happy to help you in employing Volpex for your application.

Students / postdocs interested in working on Volpex welcome to contact us.

Our team contacts:

Dr. Jaspal Subhlok: jaspal@uh.edu

•Dr. David Anderson: davea@ssl.berkeley.edu

•Dr. Edgar Gabriel: gabriel@cs.uh.edu

•Hien Nguyen: hien.nguyen.nx@gmail.com

•Eshwar Rohit: eshwar.rohit@gmail.com

•Rakhi Anand: rakhi@cs.uh.edu

•LaToya Green: latoya1987@msn.com

Our Website: http://volpex.cs.uh.edu

PARALLEL EXECUTION IN VOLUNTEER ENVIRONMENT

IMPLEMENTATION STATUS

