-
Notifications
You must be signed in to change notification settings - Fork 143
/
HypergraphDataset.py
163 lines (138 loc) · 5.57 KB
/
HypergraphDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import pickle
import os
from openhgnn.dataset import register_dataset, BaseDataset
import numpy as np
import copy
from torch.utils.data import Dataset
from scipy.sparse import vstack as s_vstack
from scipy.sparse import csr_matrix
from dgl.data.utils import download, extract_archive
class HgraphDataset(Dataset):
_prefix = 'https://s3.cn-north-1.amazonaws.com.cn/dgl-data/'
_urls = {
}
def __init__(self, name, is_train=True, raw_dir = None, force_reload = False, verbose = True):
assert name in ['GPS','drug','MovieLens','wordnet']
self.data_path = './openhgnn/dataset/{}4DHNE.zip'.format(name.lower())
raw_dir = './openhgnn/dataset/'
url = self._prefix + 'dataset/openhgnn/{}4DHNE.zip'.format(name.lower())
super().__init__()
self.name=name
self.url=url
self.raw_dir=raw_dir
self.force_reload=force_reload
self.verbose=verbose
self.train_file = 'train_data.npz'
self.test_file = 'test_data.npz'
self.num_neg_samples = 1
self.pair_radio = 0.9
self.sparse_input = True
self.train_dir = raw_dir + '{}'.format(self.name)
self.is_train = is_train
self.download()
self.process()
def download(self):
# download raw data to local disk
# path to store the file
if os.path.exists(self.data_path): # pragma: no cover
pass
else:
file_path = os.path.join(self.raw_dir)
# download file
download(self.url, path=file_path)
extract_archive(self.data_path, os.path.join(self.raw_dir, self.name))
def process(self):
if self.is_train:
self.process_train()
if not os.path.exists(f"./embeddings_{self.name}.pkl"):
self.embeddings = generate_embeddings(
self.edges, self.nums_type)
with open(f"./embeddings_{self.name}.pkl", 'wb') as f:
pickle.dump(self.embeddings, f)
else:
with open(f"./embeddings_{self.name}.pkl", 'rb') as f:
self.embeddings = pickle.load(f)
else:
self.process_val()
with open(f"./embeddings_{self.name}.pkl", 'rb') as f:
self.embeddings = pickle.load(f)
def process_val(self):
data = np.load(os.path.join(self.train_dir, self.test_file), allow_pickle=True)
self.edges = data['test_data']
self.nums_type = data['nums_type']
self.node_cluster = data['node_cluster'] if 'node_cluster' in data else None
self.edge_set = set(map(tuple, self.edges))
def process_train(self):
data = np.load(os.path.join(self.train_dir, self.train_file), allow_pickle=True)
self.edges = data['train_data']
self.nums_type = data['nums_type']
self.labels = data['labels'] if 'labels' in data else None
self.idx_label = data['idx_label'] if 'idx_label' in data else None
self.label_set = data['label_name'] if 'label_name' in data else None
self.edge_set = set(map(tuple, self.edges))
def __getitem__(self, idx):
pos_data = [self.edges[idx]]
neg_data = []
n_neg = 0
while(n_neg < self.num_neg_samples):
# warning !!! we need deepcopy to copy list
index = copy.deepcopy(self.edges[idx])
mode = np.random.rand()
if mode < self.pair_radio:
type_ = np.random.randint(3)
# Randomly select a mode
node = np.random.randint(self.nums_type[type_])
index[type_] = node
else:
# Randomly select two types
types_ = np.random.choice(3, 2, replace=False)
node_1 = np.random.randint(self.nums_type[types_[0]])
node_2 = np.random.randint(self.nums_type[types_[1]])
index[types_[0]] = node_1
index[types_[1]] = node_2
if tuple(index) in self.edge_set:
continue
n_neg += 1
neg_data.append(index)
data = np.vstack(pos_data+neg_data)
if len(neg_data) > 0:
nums = len(data)
labels = np.zeros(nums)
labels[0] = 1
else:
labels = np.ones(1)
batch_e = embedding_lookup(self.embeddings, data)
return batch_e, labels
def __len__(self):
return len(self.edges)
def embedding_lookup(embeddings, index, sparse_input=True):
if sparse_input:
return [embeddings[i][index[:, i], :].todense() for i in range(3)]
else:
return [embeddings[i][index[:, i], :] for i in range(3)]
def generate_H(edge, nums_type):
nums_examples = len(edge)
H = [csr_matrix((np.ones(nums_examples), (edge[:, i], range(
nums_examples))), shape=(nums_type[i], nums_examples)) for i in range(3)]
return H
def generate_embeddings(edge, nums_type):
r"""
Args:
edge (_type_): Number of edges
nums_type (_type_): Number of node types
Returns:
_type_: _description_
"""
H = generate_H(edge, nums_type)
embeddings = [H[i].dot(s_vstack([H[j] for j in range(3) if j != i]).T).astype(
'float') for i in range(3)]
# 0-1 scaling
for i in range(3):
col_max = np.array(embeddings[i].max(0).todense()).flatten()
_, col_index = embeddings[i].nonzero()
embeddings[i].data /= col_max[col_index]
return embeddings
@register_dataset("hypergraph_dataset")
class HGraphDataset(BaseDataset):
def get_data(self, name, is_train):
return HgraphDataset(name, is_train)