-
Notifications
You must be signed in to change notification settings - Fork 23
/
train_llama.py
191 lines (156 loc) · 7.43 KB
/
train_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
import os
import sys
import torch
import fire
import time
import json
import random
import wandb
import numpy as np
from tqdm import tqdm
from typing import Tuple
from pathlib import Path
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from llama import ModelArgs, Transformer, Tokenizer, FunctionLM
def setup_model_parallel() -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
return local_rank, world_size
def load(ckpt_dir: str, tokenizer_path: str, local_rank: int, world_size: int, func_dict: dict) -> FunctionLM:
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert (
world_size == len(checkpoints)
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
ckpt_path = checkpoints[local_rank]
print("Loading")
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(max_seq_len=2048, max_batch_size=1, **params)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args).cuda().half()
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
funcmodel = FunctionLM(model, tokenizer, func_dict = func_dict)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return funcmodel
def main(ckpt_dir: str, tokenizer_path: str, input_file: str = None, lr: float = 1e-3, num_epochs: int = 20, dataset: str = "gsm8k-xl", log_prefix="", only_functoken=False, log_each=False):
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(1)
np.random.seed(1)
func_dict_path = f"data/{dataset}/func_dict.json"
func_dict = json.load(open(func_dict_path, "r"))
local_rank, world_size = setup_model_parallel()
if local_rank > 0:
sys.stdout = open(os.devnull, 'w')
if local_rank == 0:
wandb.init(project="funcllama", name=f"{dataset}-{world_size}-load")
# wandb.init(project="opt", name=save_name)
funcmodel = load(ckpt_dir, tokenizer_path, local_rank, world_size, func_dict=func_dict)
if input_file.endswith(".json"):
with open(input_file, "r") as f:
prompts = json.load(f)
else:
with open(input_file, "r") as f:
prompts = f.readlines()
prompts = [prompt.strip().replace("\\n", "\n") for prompt in prompts if len(prompt) > 1]
if dataset == "gsm8k-xl":
# the last 1000 prompts are the testset
test_len = 1000
elif dataset == "funcqa":
# the last 39 prompts are the testset
test_len = 39
elif dataset == "vh":
test_len = 47
elif dataset == "kamel":
test_len = 1000
testset = prompts[-test_len:]
trainset = prompts[:-test_len]
# only update tokens with gradients required
optimizer = torch.optim.Adam([p for p in funcmodel.parameters() if p.requires_grad], lr=lr)
# func_dict
func_dict = funcmodel.func_dict
func_list = list(func_dict.keys())
from collections import defaultdict
for epoch in range(num_epochs):
results = defaultdict(list)
random.shuffle(trainset)
for case_idx, prompt in tqdm(enumerate(trainset)):
funcmodel.train()
optimizer.zero_grad()
loss, result = funcmodel.get_loss([prompt], only_functoken=only_functoken)
loss.backward()
optimizer.step()
for i, r in result.items():
results[i].append(r)
if (case_idx + 1) % 20 == 0:
for i in range(len(func_list)+1):
if i != len(func_list):
tp, pred, true = sum([r[i] for r in results["tp"]]), sum([r[i] for r in results["pred"]]), sum([r[i] for r in results["true"]])
else:
tp, pred, true = sum([r.sum() for r in results["tp"]]), sum([r.sum() for r in results["pred"]]), sum([r.sum() for r in results["true"]])
# print(f"tp: {tp}, pred: {pred}, true: {true}")
if local_rank == 0:
if i != len(func_list) and log_each:
wandb.log({
f"precision-{i}": tp / (pred + 1e-8),
f"recall-{i}": tp / (true + 1e-8),
f"f1-{i}": 2 * tp / (pred + true + 1e-8)
})
elif i == len(func_list):
wandb.log({
f"precision": tp / (pred + 1e-8),
f"recall": tp / (true + 1e-8),
f"f1": 2 * tp / (pred + true + 1e-8)
})
# save the parameters of func_embed
# torch.save(funcmodel.func_embed.state_dict(), save_file)
results = defaultdict(list)
if local_rank == 0:
wandb.log({"loss": loss.item()})
# test on validation set
results = defaultdict(list)
for case_idx, prompt in tqdm(enumerate(testset)):
funcmodel.eval()
with torch.no_grad():
loss, result = funcmodel.get_loss([prompt])
for i, r in result.items():
results[i].append(r)
for i in range(len(func_list) + 1):
if i != len(func_list):
tp, pred, true = sum([r[i] for r in results["tp"]]), sum([r[i] for r in results["pred"]]), sum([r[i] for r in results["true"]])
else:
# 4 is for all functions
tp, pred, true = sum([r.sum() for r in results["tp"]]), sum([r.sum() for r in results["pred"]]), sum([r.sum() for r in results["true"]])
# print(f"tp: {tp}, pred: {pred}, true: {true}")
if local_rank == 0:
if i != len(func_list) and log_each:
wandb.log({
f"test-precision-{i}": tp / (pred + 1e-8),
f"test-recall-{i}": tp / (true + 1e-8),
f"test-f1-{i}": 2 * tp / (pred + true + 1e-8)
})
elif i == len(func_list):
wandb.log({
f"test-precision": tp / (pred + 1e-8),
f"test-recall": tp / (true + 1e-8),
f"test-f1": 2 * tp / (pred + true + 1e-8)
})
# save the parameters of func_embed every epoch
save_dir = f"checkpoints/{log_prefix}{dataset}/"
os.makedirs(save_dir, exist_ok=True)
torch.save(funcmodel.func_embed.state_dict(), f"{save_dir}/epoch_{epoch}.pth")
results = defaultdict(list)
if __name__ == "__main__":
fire.Fire(main)