
Mutation Analysis

Mitchell Gale - November 2022

Testing that tests your tests

Common Testing Metrics

• Branch coverage

• Line coverage

• Statement coverage

Mutation Analysis

A way to test the quality of your test suite.

Creates small changes (mutations) to your project to add bugs

Common Testing Metrics

• Branch coverage

• Line coverage

• Statement coverage

These are good… sometimes. High coverage does not mean we will catch
all potential bugs.

What can we do to Ensure good testing?

• Intentionally add bugs into your program and test if a test fails as a result
of them

• Do this across your entire project and count how many bugs it caught and
how many it missed

• This measures the test suite’s ability to find bugs

• We’ll called bugs that it caught, bugs that were “killed”

• Bugs that were not caught will be have “survived”

Mutants

• One change to the program that should cause a bug.

• Some examples of mutants

• a = b + c -> a = b - c

• If (a == b) -> if (a != b)

Mutants

int max (int a, int b)
{

if (a > b)
{

return a;
}
return b;

}

int max (int a, int b)
{

if (a < b)
{

return a;
}
return b;

}

ORIGINAL Mutant

Mutants

int max (int a, int b)
{

if (a > b)
{

return a;
}
return b;

}

int max (int a, int b)
{

if (a < b)
{

return a;
}
return b;

}

ORIGINAL Mutant

Test that would kill the mutant
assertEquals(max(10, 20), 20);

Test that would survive
assertEquals(max(20, 20), 20);

Mutants

int sumIfAEven (int a, int b)
{

if (a%2 == 0)
{

return a + b;
}
return 0;

}

int sumIfAEven (int a, int b)
{

if (a%2 == 0)
{

return a - b;
}
return 0;

}

ORIGINAL Mutant

Mutants

int sumIfAEven (int a, int b)
{

if (a%2 == 0)
{

return a + b;
}
return 0;

}

int sumIfAEven (int a, int b)
{

if (a%2 == 0)
{

return a - b;
}
return 0;

}

ORIGINAL Mutant

Test that would kill the mutant
assertEquals(sumIfAEven(6, 10), 16);

Test that would Survive
assertEquals(sumIfAEven(11, 12), 0);

Mutants

bool andFunc (bool a, bool b)
{

if (a && b)
{

return true;
}
return false;

}

bool andFunc (bool a, bool b)
{

if (a || b)
{

return true;
}
return false;

}

ORIGINAL Mutant

Mutants

bool andFunc (bool a, bool b)
{

if (a && b)
{

return true;
}
return false;

}

bool andFunc (bool a, bool b)
{

if (a || b)
{

return true;
}
return false;

}

ORIGINAL Mutant

Test that would kill the mutant
assertEquals(andFunc(false, true), false);

Test that would survive
assertEquals(andFunc(true, true), true);

Equivalent Mutants

int max (int a, int b)
{
 int max = a

if (a > b)
{

max = b;
}
return max;

}

int max (int a, int b)
{
 int max = a

if (max > b)
{

max = b;
}
return max;

}

ORIGINAL Mutant

Types of mutants

• Arithmetic Operations

• Replace operators (+, -, /, *, %) with each other

• Boolean Relations

• Replace operators (>, >=, ==, !=, <=, <) with each other

• Statement Deletion

• Remove a statement

And more!

Mutation Testing Tools

• PiTest - Java

• Stryker - Javascript/C#/Scala

PiTest
For a gradle project to add PiTist:

plugins {
 id 'info.solidsoft.pitest' version '1.9.0'
}

pitest {
 targetClasses = ['org.opensearch.sql.*']
 pitestVersion = '1.9.0'
 outputFormats = ['XML', 'HTML']
 junit5PluginVersion = '1.0.0'
}

PiTest on OpenSearch SQL
==
- Statistics
==
>> Line Coverage: 5429/5799 (94%)
>> Generated 2896 mutations Killed 2453 (85%)
>> Mutations with no coverage 118. Test strength 88%
>> Ran 26997 tests (9.32 tests per mutation)

Issues with Mutation Analysis

• Commonly, only one mutant is modified at a time

• Manual checking of survived mutants for equivalent mutants

Mutation Analysis Summary

All about testing the quality of your tests

Mutants are small modifications to your project to implement bugs, and see
if your test suite can find the bugs

Thank You!

Any Questions?

