-
Notifications
You must be signed in to change notification settings - Fork 209
/
session_impl.h
705 lines (615 loc) · 26.1 KB
/
session_impl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
/***********************************************************************
* Copyright (c) 2021 Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_MUSIG_SESSION_IMPL_H
#define SECP256K1_MODULE_MUSIG_SESSION_IMPL_H
#include <string.h>
#include "../../../include/secp256k1.h"
#include "../../../include/secp256k1_extrakeys.h"
#include "../../../include/secp256k1_musig.h"
#include "keyagg.h"
#include "session.h"
#include "../../eckey.h"
#include "../../hash.h"
#include "../../scalar.h"
#include "../../util.h"
static const unsigned char secp256k1_musig_secnonce_magic[4] = { 0x22, 0x0e, 0xdc, 0xf1 };
static void secp256k1_musig_secnonce_save(secp256k1_musig_secnonce *secnonce, const secp256k1_scalar *k, secp256k1_ge *pk) {
memcpy(&secnonce->data[0], secp256k1_musig_secnonce_magic, 4);
secp256k1_scalar_get_b32(&secnonce->data[4], &k[0]);
secp256k1_scalar_get_b32(&secnonce->data[36], &k[1]);
secp256k1_ge_to_bytes(&secnonce->data[68], pk);
}
static int secp256k1_musig_secnonce_load(const secp256k1_context* ctx, secp256k1_scalar *k, secp256k1_ge *pk, secp256k1_musig_secnonce *secnonce) {
int is_zero;
ARG_CHECK(secp256k1_memcmp_var(&secnonce->data[0], secp256k1_musig_secnonce_magic, 4) == 0);
secp256k1_scalar_set_b32(&k[0], &secnonce->data[4], NULL);
secp256k1_scalar_set_b32(&k[1], &secnonce->data[36], NULL);
secp256k1_ge_from_bytes(pk, &secnonce->data[68]);
/* We make very sure that the nonce isn't invalidated by checking the values
* in addition to the magic. */
is_zero = secp256k1_scalar_is_zero(&k[0]) & secp256k1_scalar_is_zero(&k[1]);
secp256k1_declassify(ctx, &is_zero, sizeof(is_zero));
ARG_CHECK(!is_zero);
return 1;
}
/* If flag is true, invalidate the secnonce; otherwise leave it. Constant-time. */
static void secp256k1_musig_secnonce_invalidate(const secp256k1_context* ctx, secp256k1_musig_secnonce *secnonce, int flag) {
secp256k1_memczero(secnonce->data, sizeof(secnonce->data), flag);
/* The flag argument is usually classified. So, the line above makes the
* magic and public key classified. However, we need both to be
* declassified. Note that we don't declassify the entire object, because if
* flag is 0, then k[0] and k[1] have not been zeroed. */
secp256k1_declassify(ctx, secnonce->data, sizeof(secp256k1_musig_secnonce_magic));
secp256k1_declassify(ctx, &secnonce->data[68], 64);
}
static const unsigned char secp256k1_musig_pubnonce_magic[4] = { 0xf5, 0x7a, 0x3d, 0xa0 };
/* Saves two group elements into a pubnonce. Requires that none of the provided
* group elements is infinity. */
static void secp256k1_musig_pubnonce_save(secp256k1_musig_pubnonce* nonce, secp256k1_ge* ge) {
int i;
memcpy(&nonce->data[0], secp256k1_musig_pubnonce_magic, 4);
for (i = 0; i < 2; i++) {
secp256k1_ge_to_bytes(nonce->data + 4+64*i, &ge[i]);
}
}
/* Loads two group elements from a pubnonce. Returns 1 unless the nonce wasn't
* properly initialized */
static int secp256k1_musig_pubnonce_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_musig_pubnonce* nonce) {
int i;
ARG_CHECK(secp256k1_memcmp_var(&nonce->data[0], secp256k1_musig_pubnonce_magic, 4) == 0);
for (i = 0; i < 2; i++) {
secp256k1_ge_from_bytes(&ge[i], nonce->data + 4 + 64*i);
}
return 1;
}
static const unsigned char secp256k1_musig_aggnonce_magic[4] = { 0xa8, 0xb7, 0xe4, 0x67 };
static void secp256k1_musig_aggnonce_save(secp256k1_musig_aggnonce* nonce, secp256k1_ge* ge) {
int i;
memcpy(&nonce->data[0], secp256k1_musig_aggnonce_magic, 4);
for (i = 0; i < 2; i++) {
secp256k1_point_save_ext(&nonce->data[4 + 64*i], &ge[i]);
}
}
static int secp256k1_musig_aggnonce_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_musig_aggnonce* nonce) {
int i;
ARG_CHECK(secp256k1_memcmp_var(&nonce->data[0], secp256k1_musig_aggnonce_magic, 4) == 0);
for (i = 0; i < 2; i++) {
secp256k1_point_load_ext(&ge[i], &nonce->data[4 + 64*i]);
}
return 1;
}
static const unsigned char secp256k1_musig_session_cache_magic[4] = { 0x9d, 0xed, 0xe9, 0x17 };
/* A session consists of
* - 4 byte session cache magic
* - 1 byte the parity of the final nonce
* - 32 byte serialized x-only final nonce
* - 32 byte nonce coefficient b
* - 32 byte signature challenge hash e
* - 32 byte scalar s that is added to the partial signatures of the signers
*/
static void secp256k1_musig_session_save(secp256k1_musig_session *session, const secp256k1_musig_session_internal *session_i) {
unsigned char *ptr = session->data;
memcpy(ptr, secp256k1_musig_session_cache_magic, 4);
ptr += 4;
*ptr = session_i->fin_nonce_parity;
ptr += 1;
memcpy(ptr, session_i->fin_nonce, 32);
ptr += 32;
secp256k1_scalar_get_b32(ptr, &session_i->noncecoef);
ptr += 32;
secp256k1_scalar_get_b32(ptr, &session_i->challenge);
ptr += 32;
secp256k1_scalar_get_b32(ptr, &session_i->s_part);
}
static int secp256k1_musig_session_load(const secp256k1_context* ctx, secp256k1_musig_session_internal *session_i, const secp256k1_musig_session *session) {
const unsigned char *ptr = session->data;
ARG_CHECK(secp256k1_memcmp_var(ptr, secp256k1_musig_session_cache_magic, 4) == 0);
ptr += 4;
session_i->fin_nonce_parity = *ptr;
ptr += 1;
memcpy(session_i->fin_nonce, ptr, 32);
ptr += 32;
secp256k1_scalar_set_b32(&session_i->noncecoef, ptr, NULL);
ptr += 32;
secp256k1_scalar_set_b32(&session_i->challenge, ptr, NULL);
ptr += 32;
secp256k1_scalar_set_b32(&session_i->s_part, ptr, NULL);
return 1;
}
static const unsigned char secp256k1_musig_partial_sig_magic[4] = { 0xeb, 0xfb, 0x1a, 0x32 };
static void secp256k1_musig_partial_sig_save(secp256k1_musig_partial_sig* sig, secp256k1_scalar *s) {
memcpy(&sig->data[0], secp256k1_musig_partial_sig_magic, 4);
secp256k1_scalar_get_b32(&sig->data[4], s);
}
static int secp256k1_musig_partial_sig_load(const secp256k1_context* ctx, secp256k1_scalar *s, const secp256k1_musig_partial_sig* sig) {
int overflow;
ARG_CHECK(secp256k1_memcmp_var(&sig->data[0], secp256k1_musig_partial_sig_magic, 4) == 0);
secp256k1_scalar_set_b32(s, &sig->data[4], &overflow);
/* Parsed signatures can not overflow */
VERIFY_CHECK(!overflow);
return 1;
}
int secp256k1_musig_pubnonce_serialize(const secp256k1_context* ctx, unsigned char *out66, const secp256k1_musig_pubnonce* nonce) {
secp256k1_ge ge[2];
int i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(out66 != NULL);
memset(out66, 0, 66);
ARG_CHECK(nonce != NULL);
if (!secp256k1_musig_pubnonce_load(ctx, ge, nonce)) {
return 0;
}
for (i = 0; i < 2; i++) {
int ret;
size_t size = 33;
ret = secp256k1_eckey_pubkey_serialize(&ge[i], &out66[33*i], &size, 1);
#ifdef VERIFY
/* serialize must succeed because the point was just loaded */
VERIFY_CHECK(ret && size == 33);
#else
(void) ret;
#endif
}
return 1;
}
int secp256k1_musig_pubnonce_parse(const secp256k1_context* ctx, secp256k1_musig_pubnonce* nonce, const unsigned char *in66) {
secp256k1_ge ge[2];
int i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(nonce != NULL);
ARG_CHECK(in66 != NULL);
for (i = 0; i < 2; i++) {
if (!secp256k1_eckey_pubkey_parse(&ge[i], &in66[33*i], 33)) {
return 0;
}
if (!secp256k1_ge_is_in_correct_subgroup(&ge[i])) {
return 0;
}
}
secp256k1_musig_pubnonce_save(nonce, ge);
return 1;
}
int secp256k1_musig_aggnonce_serialize(const secp256k1_context* ctx, unsigned char *out66, const secp256k1_musig_aggnonce* nonce) {
secp256k1_ge ge[2];
int i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(out66 != NULL);
memset(out66, 0, 66);
ARG_CHECK(nonce != NULL);
if (!secp256k1_musig_aggnonce_load(ctx, ge, nonce)) {
return 0;
}
for (i = 0; i < 2; i++) {
secp256k1_ge_serialize_ext(&out66[33*i], &ge[i]);
}
return 1;
}
int secp256k1_musig_aggnonce_parse(const secp256k1_context* ctx, secp256k1_musig_aggnonce* nonce, const unsigned char *in66) {
secp256k1_ge ge[2];
int i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(nonce != NULL);
ARG_CHECK(in66 != NULL);
for (i = 0; i < 2; i++) {
if (!secp256k1_ge_parse_ext(&ge[i], &in66[33*i])) {
return 0;
}
}
secp256k1_musig_aggnonce_save(nonce, ge);
return 1;
}
int secp256k1_musig_partial_sig_serialize(const secp256k1_context* ctx, unsigned char *out32, const secp256k1_musig_partial_sig* sig) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(out32 != NULL);
ARG_CHECK(sig != NULL);
memcpy(out32, &sig->data[4], 32);
return 1;
}
int secp256k1_musig_partial_sig_parse(const secp256k1_context* ctx, secp256k1_musig_partial_sig* sig, const unsigned char *in32) {
secp256k1_scalar tmp;
int overflow;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(in32 != NULL);
secp256k1_scalar_set_b32(&tmp, in32, &overflow);
if (overflow) {
return 0;
}
secp256k1_musig_partial_sig_save(sig, &tmp);
return 1;
}
/* Write optional inputs into the hash */
static void secp256k1_nonce_function_musig_helper(secp256k1_sha256 *sha, unsigned int prefix_size, const unsigned char *data, unsigned char len) {
unsigned char zero[7] = { 0 };
/* The spec requires length prefixes to be between 1 and 8 bytes
* (inclusive) */
VERIFY_CHECK(prefix_size <= 8);
/* Since the length of all input data fits in a byte, we can always pad the
* length prefix with prefix_size - 1 zero bytes. */
secp256k1_sha256_write(sha, zero, prefix_size - 1);
if (data != NULL) {
secp256k1_sha256_write(sha, &len, 1);
secp256k1_sha256_write(sha, data, len);
} else {
len = 0;
secp256k1_sha256_write(sha, &len, 1);
}
}
static void secp256k1_nonce_function_musig(secp256k1_scalar *k, const unsigned char *session_id, const unsigned char *msg32, const unsigned char *seckey32, const unsigned char *pk33, const unsigned char *agg_pk32, const unsigned char *extra_input32) {
secp256k1_sha256 sha;
unsigned char rand[32];
unsigned char i;
unsigned char msg_present;
if (seckey32 != NULL) {
secp256k1_sha256_initialize_tagged(&sha, (unsigned char*)"MuSig/aux", sizeof("MuSig/aux") - 1);
secp256k1_sha256_write(&sha, session_id, 32);
secp256k1_sha256_finalize(&sha, rand);
for (i = 0; i < 32; i++) {
rand[i] ^= seckey32[i];
}
} else {
memcpy(rand, session_id, sizeof(rand));
}
/* Subtract one from `sizeof` to avoid hashing the implicit null byte */
secp256k1_sha256_initialize_tagged(&sha, (unsigned char*)"MuSig/nonce", sizeof("MuSig/nonce") - 1);
secp256k1_sha256_write(&sha, rand, sizeof(rand));
secp256k1_nonce_function_musig_helper(&sha, 1, pk33, 33);
secp256k1_nonce_function_musig_helper(&sha, 1, agg_pk32, 32);
msg_present = msg32 != NULL;
secp256k1_sha256_write(&sha, &msg_present, 1);
if (msg_present) {
secp256k1_nonce_function_musig_helper(&sha, 8, msg32, 32);
}
secp256k1_nonce_function_musig_helper(&sha, 4, extra_input32, 32);
for (i = 0; i < 2; i++) {
unsigned char buf[32];
secp256k1_sha256 sha_tmp = sha;
secp256k1_sha256_write(&sha_tmp, &i, 1);
secp256k1_sha256_finalize(&sha_tmp, buf);
secp256k1_scalar_set_b32(&k[i], buf, NULL);
}
}
int secp256k1_musig_nonce_gen(const secp256k1_context* ctx, secp256k1_musig_secnonce *secnonce, secp256k1_musig_pubnonce *pubnonce, const unsigned char *session_id32, const unsigned char *seckey, const secp256k1_pubkey *pubkey, const unsigned char *msg32, const secp256k1_musig_keyagg_cache *keyagg_cache, const unsigned char *extra_input32) {
secp256k1_keyagg_cache_internal cache_i;
secp256k1_scalar k[2];
secp256k1_ge nonce_pt[2];
int i;
unsigned char pk_ser[33];
size_t pk_ser_len = sizeof(pk_ser);
unsigned char aggpk_ser[32];
unsigned char *aggpk_ser_ptr = NULL;
secp256k1_ge pk;
int pk_serialize_success;
int ret = 1;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secnonce != NULL);
memset(secnonce, 0, sizeof(*secnonce));
ARG_CHECK(pubnonce != NULL);
memset(pubnonce, 0, sizeof(*pubnonce));
ARG_CHECK(session_id32 != NULL);
ARG_CHECK(pubkey != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
if (seckey == NULL) {
/* Check in constant time that the session_id is not 0 as a
* defense-in-depth measure that may protect against a faulty RNG. */
unsigned char acc = 0;
for (i = 0; i < 32; i++) {
acc |= session_id32[i];
}
ret &= !!acc;
memset(&acc, 0, sizeof(acc));
}
/* Check that the seckey is valid to be able to sign for it later. */
if (seckey != NULL) {
secp256k1_scalar sk;
ret &= secp256k1_scalar_set_b32_seckey(&sk, seckey);
secp256k1_scalar_clear(&sk);
}
if (keyagg_cache != NULL) {
if (!secp256k1_keyagg_cache_load(ctx, &cache_i, keyagg_cache)) {
return 0;
}
/* The loaded point cache_i.pk can not be the point at infinity. */
secp256k1_fe_get_b32(aggpk_ser, &cache_i.pk.x);
aggpk_ser_ptr = aggpk_ser;
}
if (!secp256k1_pubkey_load(ctx, &pk, pubkey)) {
return 0;
}
pk_serialize_success = secp256k1_eckey_pubkey_serialize(&pk, pk_ser, &pk_ser_len, SECP256K1_EC_COMPRESSED);
#ifdef VERIFY
/* A pubkey cannot be the point at infinity */
VERIFY_CHECK(pk_serialize_success);
VERIFY_CHECK(pk_ser_len == sizeof(pk_ser));
#else
(void) pk_serialize_success;
#endif
secp256k1_nonce_function_musig(k, session_id32, msg32, seckey, pk_ser, aggpk_ser_ptr, extra_input32);
VERIFY_CHECK(!secp256k1_scalar_is_zero(&k[0]));
VERIFY_CHECK(!secp256k1_scalar_is_zero(&k[1]));
VERIFY_CHECK(!secp256k1_scalar_eq(&k[0], &k[1]));
secp256k1_musig_secnonce_save(secnonce, k, &pk);
secp256k1_musig_secnonce_invalidate(ctx, secnonce, !ret);
for (i = 0; i < 2; i++) {
secp256k1_gej nonce_ptj;
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &nonce_ptj, &k[i]);
secp256k1_ge_set_gej(&nonce_pt[i], &nonce_ptj);
secp256k1_declassify(ctx, &nonce_pt[i], sizeof(nonce_pt));
secp256k1_scalar_clear(&k[i]);
}
/* nonce_pt won't be infinity because k != 0 with overwhelming probability */
secp256k1_musig_pubnonce_save(pubnonce, nonce_pt);
return ret;
}
static int secp256k1_musig_sum_nonces(const secp256k1_context* ctx, secp256k1_gej *summed_nonces, const secp256k1_musig_pubnonce * const* pubnonces, size_t n_pubnonces) {
size_t i;
int j;
secp256k1_gej_set_infinity(&summed_nonces[0]);
secp256k1_gej_set_infinity(&summed_nonces[1]);
for (i = 0; i < n_pubnonces; i++) {
secp256k1_ge nonce_pt[2];
if (!secp256k1_musig_pubnonce_load(ctx, nonce_pt, pubnonces[i])) {
return 0;
}
for (j = 0; j < 2; j++) {
secp256k1_gej_add_ge_var(&summed_nonces[j], &summed_nonces[j], &nonce_pt[j], NULL);
}
}
return 1;
}
int secp256k1_musig_nonce_agg(const secp256k1_context* ctx, secp256k1_musig_aggnonce *aggnonce, const secp256k1_musig_pubnonce * const* pubnonces, size_t n_pubnonces) {
secp256k1_gej aggnonce_ptj[2];
secp256k1_ge aggnonce_pt[2];
int i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(aggnonce != NULL);
ARG_CHECK(pubnonces != NULL);
ARG_CHECK(n_pubnonces > 0);
if (!secp256k1_musig_sum_nonces(ctx, aggnonce_ptj, pubnonces, n_pubnonces)) {
return 0;
}
for (i = 0; i < 2; i++) {
secp256k1_ge_set_gej(&aggnonce_pt[i], &aggnonce_ptj[i]);
}
secp256k1_musig_aggnonce_save(aggnonce, aggnonce_pt);
return 1;
}
/* tagged_hash(aggnonce[0], aggnonce[1], agg_pk, msg) */
static int secp256k1_musig_compute_noncehash(unsigned char *noncehash, secp256k1_ge *aggnonce, const unsigned char *agg_pk32, const unsigned char *msg) {
unsigned char buf[33];
secp256k1_sha256 sha;
int i;
secp256k1_sha256_initialize_tagged(&sha, (unsigned char*)"MuSig/noncecoef", sizeof("MuSig/noncecoef") - 1);
for (i = 0; i < 2; i++) {
secp256k1_ge_serialize_ext(buf, &aggnonce[i]);
secp256k1_sha256_write(&sha, buf, sizeof(buf));
}
secp256k1_sha256_write(&sha, agg_pk32, 32);
secp256k1_sha256_write(&sha, msg, 32);
secp256k1_sha256_finalize(&sha, noncehash);
return 1;
}
static int secp256k1_musig_nonce_process_internal(int *fin_nonce_parity, unsigned char *fin_nonce, secp256k1_scalar *b, secp256k1_gej *aggnoncej, const unsigned char *agg_pk32, const unsigned char *msg) {
unsigned char noncehash[32];
secp256k1_ge fin_nonce_pt;
secp256k1_gej fin_nonce_ptj;
secp256k1_ge aggnonce[2];
secp256k1_ge_set_gej(&aggnonce[0], &aggnoncej[0]);
secp256k1_ge_set_gej(&aggnonce[1], &aggnoncej[1]);
if (!secp256k1_musig_compute_noncehash(noncehash, aggnonce, agg_pk32, msg)) {
return 0;
}
/* fin_nonce = aggnonce[0] + b*aggnonce[1] */
secp256k1_scalar_set_b32(b, noncehash, NULL);
secp256k1_gej_set_infinity(&fin_nonce_ptj);
secp256k1_ecmult(&fin_nonce_ptj, &aggnoncej[1], b, NULL);
secp256k1_gej_add_ge_var(&fin_nonce_ptj, &fin_nonce_ptj, &aggnonce[0], NULL);
secp256k1_ge_set_gej(&fin_nonce_pt, &fin_nonce_ptj);
if (secp256k1_ge_is_infinity(&fin_nonce_pt)) {
fin_nonce_pt = secp256k1_ge_const_g;
}
/* fin_nonce_pt is not the point at infinity */
secp256k1_fe_normalize_var(&fin_nonce_pt.x);
secp256k1_fe_get_b32(fin_nonce, &fin_nonce_pt.x);
secp256k1_fe_normalize_var(&fin_nonce_pt.y);
*fin_nonce_parity = secp256k1_fe_is_odd(&fin_nonce_pt.y);
return 1;
}
int secp256k1_musig_nonce_process(const secp256k1_context* ctx, secp256k1_musig_session *session, const secp256k1_musig_aggnonce *aggnonce, const unsigned char *msg32, const secp256k1_musig_keyagg_cache *keyagg_cache, const secp256k1_pubkey *adaptor) {
secp256k1_keyagg_cache_internal cache_i;
secp256k1_ge aggnonce_pt[2];
secp256k1_gej aggnonce_ptj[2];
unsigned char fin_nonce[32];
secp256k1_musig_session_internal session_i;
unsigned char agg_pk32[32];
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(session != NULL);
ARG_CHECK(aggnonce != NULL);
ARG_CHECK(msg32 != NULL);
ARG_CHECK(keyagg_cache != NULL);
if (!secp256k1_keyagg_cache_load(ctx, &cache_i, keyagg_cache)) {
return 0;
}
secp256k1_fe_get_b32(agg_pk32, &cache_i.pk.x);
if (!secp256k1_musig_aggnonce_load(ctx, aggnonce_pt, aggnonce)) {
return 0;
}
secp256k1_gej_set_ge(&aggnonce_ptj[0], &aggnonce_pt[0]);
secp256k1_gej_set_ge(&aggnonce_ptj[1], &aggnonce_pt[1]);
/* Add public adaptor to nonce */
if (adaptor != NULL) {
secp256k1_ge adaptorp;
if (!secp256k1_pubkey_load(ctx, &adaptorp, adaptor)) {
return 0;
}
secp256k1_gej_add_ge_var(&aggnonce_ptj[0], &aggnonce_ptj[0], &adaptorp, NULL);
}
if (!secp256k1_musig_nonce_process_internal(&session_i.fin_nonce_parity, fin_nonce, &session_i.noncecoef, aggnonce_ptj, agg_pk32, msg32)) {
return 0;
}
secp256k1_schnorrsig_challenge(&session_i.challenge, fin_nonce, msg32, 32, agg_pk32);
/* If there is a tweak then set `challenge` times `tweak` to the `s`-part.*/
secp256k1_scalar_set_int(&session_i.s_part, 0);
if (!secp256k1_scalar_is_zero(&cache_i.tweak)) {
secp256k1_scalar e_tmp;
secp256k1_scalar_mul(&e_tmp, &session_i.challenge, &cache_i.tweak);
if (secp256k1_fe_is_odd(&cache_i.pk.y)) {
secp256k1_scalar_negate(&e_tmp, &e_tmp);
}
secp256k1_scalar_add(&session_i.s_part, &session_i.s_part, &e_tmp);
}
memcpy(session_i.fin_nonce, fin_nonce, sizeof(session_i.fin_nonce));
secp256k1_musig_session_save(session, &session_i);
return 1;
}
static void secp256k1_musig_partial_sign_clear(secp256k1_scalar *sk, secp256k1_scalar *k) {
secp256k1_scalar_clear(sk);
secp256k1_scalar_clear(&k[0]);
secp256k1_scalar_clear(&k[1]);
}
int secp256k1_musig_partial_sign(const secp256k1_context* ctx, secp256k1_musig_partial_sig *partial_sig, secp256k1_musig_secnonce *secnonce, const secp256k1_keypair *keypair, const secp256k1_musig_keyagg_cache *keyagg_cache, const secp256k1_musig_session *session) {
secp256k1_scalar sk;
secp256k1_ge pk, keypair_pk;
secp256k1_scalar k[2];
secp256k1_scalar mu, s;
secp256k1_keyagg_cache_internal cache_i;
secp256k1_musig_session_internal session_i;
int ret;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secnonce != NULL);
/* Fails if the magic doesn't match */
ret = secp256k1_musig_secnonce_load(ctx, k, &pk, secnonce);
/* Set nonce to zero to avoid nonce reuse. This will cause subsequent calls
* of this function to fail */
memset(secnonce, 0, sizeof(*secnonce));
if (!ret) {
secp256k1_musig_partial_sign_clear(&sk, k);
return 0;
}
ARG_CHECK(partial_sig != NULL);
ARG_CHECK(keypair != NULL);
ARG_CHECK(keyagg_cache != NULL);
ARG_CHECK(session != NULL);
if (!secp256k1_keypair_load(ctx, &sk, &keypair_pk, keypair)) {
secp256k1_musig_partial_sign_clear(&sk, k);
return 0;
}
ARG_CHECK(secp256k1_fe_equal(&pk.x, &keypair_pk.x)
&& secp256k1_fe_equal(&pk.y, &keypair_pk.y));
if (!secp256k1_keyagg_cache_load(ctx, &cache_i, keyagg_cache)) {
secp256k1_musig_partial_sign_clear(&sk, k);
return 0;
}
secp256k1_fe_normalize_var(&pk.y);
/* Negate sk if secp256k1_fe_is_odd(&cache_i.pk.y)) XOR cache_i.parity_acc.
* This corresponds to the line "Let d = g⋅gacc⋅d' mod n" in the
* specification. */
if ((secp256k1_fe_is_odd(&cache_i.pk.y)
!= cache_i.parity_acc)) {
secp256k1_scalar_negate(&sk, &sk);
}
/* Multiply KeyAgg coefficient */
secp256k1_fe_normalize_var(&pk.x);
/* TODO Cache mu */
secp256k1_musig_keyaggcoef(&mu, &cache_i, &pk);
secp256k1_scalar_mul(&sk, &sk, &mu);
if (!secp256k1_musig_session_load(ctx, &session_i, session)) {
secp256k1_musig_partial_sign_clear(&sk, k);
return 0;
}
if (session_i.fin_nonce_parity) {
secp256k1_scalar_negate(&k[0], &k[0]);
secp256k1_scalar_negate(&k[1], &k[1]);
}
/* Sign */
secp256k1_scalar_mul(&s, &session_i.challenge, &sk);
secp256k1_scalar_mul(&k[1], &session_i.noncecoef, &k[1]);
secp256k1_scalar_add(&k[0], &k[0], &k[1]);
secp256k1_scalar_add(&s, &s, &k[0]);
secp256k1_musig_partial_sig_save(partial_sig, &s);
secp256k1_musig_partial_sign_clear(&sk, k);
return 1;
}
int secp256k1_musig_partial_sig_verify(const secp256k1_context* ctx, const secp256k1_musig_partial_sig *partial_sig, const secp256k1_musig_pubnonce *pubnonce, const secp256k1_pubkey *pubkey, const secp256k1_musig_keyagg_cache *keyagg_cache, const secp256k1_musig_session *session) {
secp256k1_keyagg_cache_internal cache_i;
secp256k1_musig_session_internal session_i;
secp256k1_scalar mu, e, s;
secp256k1_gej pkj;
secp256k1_ge nonce_pt[2];
secp256k1_gej rj;
secp256k1_gej tmp;
secp256k1_ge pkp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(partial_sig != NULL);
ARG_CHECK(pubnonce != NULL);
ARG_CHECK(pubkey != NULL);
ARG_CHECK(keyagg_cache != NULL);
ARG_CHECK(session != NULL);
if (!secp256k1_musig_session_load(ctx, &session_i, session)) {
return 0;
}
/* Compute "effective" nonce rj = aggnonce[0] + b*aggnonce[1] */
/* TODO: use multiexp to compute -s*G + e*mu*pubkey + aggnonce[0] + b*aggnonce[1] */
if (!secp256k1_musig_pubnonce_load(ctx, nonce_pt, pubnonce)) {
return 0;
}
secp256k1_gej_set_ge(&rj, &nonce_pt[1]);
secp256k1_ecmult(&rj, &rj, &session_i.noncecoef, NULL);
secp256k1_gej_add_ge_var(&rj, &rj, &nonce_pt[0], NULL);
if (!secp256k1_pubkey_load(ctx, &pkp, pubkey)) {
return 0;
}
if (!secp256k1_keyagg_cache_load(ctx, &cache_i, keyagg_cache)) {
return 0;
}
/* Multiplying the challenge by the KeyAgg coefficient is equivalent
* to multiplying the signer's public key by the coefficient, except
* much easier to do. */
secp256k1_musig_keyaggcoef(&mu, &cache_i, &pkp);
secp256k1_scalar_mul(&e, &session_i.challenge, &mu);
/* Negate e if secp256k1_fe_is_odd(&cache_i.pk.y)) XOR cache_i.parity_acc.
* This corresponds to the line "Let g' = g⋅gacc mod n" and the multiplication "g'⋅e"
* in the specification. */
if (secp256k1_fe_is_odd(&cache_i.pk.y)
!= cache_i.parity_acc) {
secp256k1_scalar_negate(&e, &e);
}
if (!secp256k1_musig_partial_sig_load(ctx, &s, partial_sig)) {
return 0;
}
/* Compute -s*G + e*pkj + rj (e already includes the keyagg coefficient mu) */
secp256k1_scalar_negate(&s, &s);
secp256k1_gej_set_ge(&pkj, &pkp);
secp256k1_ecmult(&tmp, &pkj, &e, &s);
if (session_i.fin_nonce_parity) {
secp256k1_gej_neg(&rj, &rj);
}
secp256k1_gej_add_var(&tmp, &tmp, &rj, NULL);
return secp256k1_gej_is_infinity(&tmp);
}
int secp256k1_musig_partial_sig_agg(const secp256k1_context* ctx, unsigned char *sig64, const secp256k1_musig_session *session, const secp256k1_musig_partial_sig * const* partial_sigs, size_t n_sigs) {
size_t i;
secp256k1_musig_session_internal session_i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig64 != NULL);
ARG_CHECK(session != NULL);
ARG_CHECK(partial_sigs != NULL);
ARG_CHECK(n_sigs > 0);
if (!secp256k1_musig_session_load(ctx, &session_i, session)) {
return 0;
}
for (i = 0; i < n_sigs; i++) {
secp256k1_scalar term;
if (!secp256k1_musig_partial_sig_load(ctx, &term, partial_sigs[i])) {
return 0;
}
secp256k1_scalar_add(&session_i.s_part, &session_i.s_part, &term);
}
secp256k1_scalar_get_b32(&sig64[32], &session_i.s_part);
memcpy(&sig64[0], session_i.fin_nonce, 32);
return 1;
}
#endif