-
Notifications
You must be signed in to change notification settings - Fork 0
/
nb-confusion.py
104 lines (85 loc) · 3.37 KB
/
nb-confusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from openpyxl import load_workbook
from sklearn.metrics import confusion_matrix
import numpy
import itertools
import matplotlib.pyplot as plt
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, numpy.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = numpy.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
d = {}
featureNames = []
wb = load_workbook(filename='attacksignatures.xlsx')
ws = wb['dataset1']
# Split colomns into dictionary entries with values as array
for tpl in tuple(ws.columns):
d[tpl[0].value] = []
d[tpl[0].value].extend([col.value for col in tpl[1:]]) # ignore the first entry (feature names) add the rest to the array
featureNames.append(tpl[0].value)
print("Features: " + ", ".join(featureNames))
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
# feature array initialisation
# creates an array of dictionairies with the same length as the amount of datapoints
features = []
features.extend([{} for row in d["attackclass"]])
# Fill the features array with values, excluding the last 2 columns (our label, and excel formula that categorises the label)
for f in featureNames[:-2]:
rownum = 0
for val in d[f]:
features[rownum][f] = val
rownum += 1
# labels are text, but we need numbers, use LabelEncoder to encode labels to numeric categories
from sklearn import preprocessing
labels = d['attackclass']
le = preprocessing.LabelEncoder()
labels = le.fit_transform(labels)
labelNames = le.classes_
# We do the same for string values in the feature list (dictvectorizer ignores non-string values)
from sklearn.feature_extraction import DictVectorizer
v = DictVectorizer(sparse=False)
features = v.fit_transform(features)
# Split the dataset into training and testing data
X_train, X_test, y_train, y_test = train_test_split(features, labels)
# Train and predict with GuassianNB
clf = GaussianNB()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(clf.score(X_test, y_test))
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, y_pred)
numpy.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=labelNames,
title='Confusion matrix, without normalization')
# Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=labelNames, normalize=True,
title='Normalized confusion matrix')
plt.show()