7/28/22, 7:03 PM StackEdit

SRS Documentation for the Gridwatch
System

Created by the Denied Access Team of the University of Pretoria COS 301
Module

Anru Nel (u20646284)

Joshua Young (u20442018)
Leonardo Wessels (u17229457)
Tshegofatsho Motlatle (U17066736)
« Thebe Kgaphola (u18371435)

Introduction

The vision of this project is to provide a customer relationship manager for a citizen who
would like to report and receive feedback on a municipal issue that they are experiencing in
their area. The goal is to provide an easy to follow, consistently updated, system that will
serve as a way for a customer to keep track of their issues and a management system for

city officials and technician teams trying to resolve the issue.

The need for this application is seen daily. With multiple reports of hundreds of “check-up”

calls happening daily on our municipal grid (2000 Calls Linked to Power Outages, Electrical

Outage Results in 800 calls, Power Outage Results in 3000 Calls) the need for a system

which can streamline this process is almost essential. We intend to provide a ticketing

system which allows for this check-up system with some automated features.

User Characteristics

1. Normal User

This would define a typical everyday user of the GridWatch System. This user would

https://stackedit.io/app# 112

7/28/22, 7:03 PM

StackEdit
use the system to create an issue, edit an issue, check information about their issue

and view issues in their area.

. City Official

This would be a member of a city municipality who would use the system to dispatch

issues, sort through all issues based on their features and view all issues that are open

. Technician Team

This would be the group of people that receive dispatched issues from the City
Officials. The tech teams would use this system to update progress issues, accept or

deny new requests and provide other basic information about issues.

Functional Requirements

Requirements

1. GS shall allow a user to register an account with the GS

1.1. GS shall provide a user the same issue registration functionality as a guest
1.2. GS shall register tickets that are created by a user to that user

1.3. GS shall allow a user to view updates on a user’s issue

1.4. GS shall keep a hidden rating of a user to measure the validity of their issue

reports

. GS shall allow a guest to register an issue

2.1. GS shall allow a power failure to be registered
2.2. GS shall allow a water supply failure to be registered
2.3. GS shall allow a pothole to be registered
2.4. GS shall allow a sinkhole to be registered
2.5. GS shall allow a user to upload a picture with the issue they are registering
2.6. GS shall provide a guest facility to provide more information about the issue
being registered
2.6.1. GS shall require a user to pin the location of the issue being registered
2.6.2. GS shall require a user to take a picture of the issue being registered

2.6.3. GS shall require a user provide a description of the issue being registered

. GS shall provide a web-based portal (referred to as GSWP) for authorized officials

3.1. GS shall display user created tickets to an authorized official

https://stackedit.io/app#

2112

7/28/22, 7:03 PM StackEdit
3.1.1. GS shall allow a user to sort displayed tickets
3.1.1.1. GS shall allow an official to sort tickets by upvotes
3.1.1.2. GS shall allow an official to sort tickets by ticket progress
3.1.1.3. GS shall allow an official to sort tickets by pending acceptance status
3.1.1.4. GS shall allow an official to sort tickets by ticket opened status
3.1.1.5. GS shall allow an official to sort tickets by ticket location
3.1.1.6. GS shall allow an official to sort tickets by the date the ticket was
created
3.1.2. GS shall display average time to complete similar issues
3.1.3. GS shall allow a ticket to be explored
3.1.3.1. GS shall allow an official the option to dispatch a ticket to tech teams
3.1.3.1.1. GS shall ensure that tickets are automatically sent to relevant tech
teams
3.1.3.2. GS shall allow an official to view details about a user created issue
3.1.3.3. GS shall allow an official to update the status of a ticket
4. GS shall communicate newly registered issues to authorized officials
4.1. GS shall create an entry for the registered issue on the GSWP
4.2 GS shall send a notification to authorized officials currently using the GS
5. GS shall provide a cell phone application for technicians

5.1. GS shall display tickets relevant to the technicians

5.1.1. GS shall allow a pending ticket to be explored
5.1.1.1 GS shall allow a pending ticket to be accepted or denied
5.1.1.1.1 GS shall, upon a ticket being accepted, assign the ticket to the
accepting tech team
5.1.1.1.2 GS shall, upon a ticket being denied, mark the ticket as not suitable
for the denying tech team.
5.1.2. GS shall allow an accepted ticket to be explored
5.1.2.1 GS shall allow a technician to communicate ticket details with the public
5.1.2.1. GS shall communicate to the public a ticket work start date
5.1.2.2. GS shall communicate to the public a ticket estimated repair cost
5.1.2.3. GS shall communicate to the public a ticket estimated repair time
5.1.2.2 GS shall allow a technician to update the status of a ticket
6. GS shall provide a cell phone application for the public
6.1. GS shall facilitate a user viewing all reported outages in their area

6.1.1. GS shall provide information about specific outages in a user’s area

https://stackedit.io/app# 312

7/28/22, 7:03 PM StackEdit
6.1.1.1. GS shall provide the estimated progress of a ticket to the user
6.1.1.2. GS shall provide the estimated cost of a ticket to the user
6.1.1.3. GS shall provide the ticket start date to a user

6.1.2. GS shall allow users to up-vote tickets and for that tickets up-votes to be

attached to the issue

REMAINING REQUIREMENTS AS AT DEMO 3
1.4.

3.1.3.1.1.

4.2.

5.1.

51.1.1.2.

Subsystems

City Official
GridWalch User Appication GridWatch Oficial Applic GiidWatch Tech Application

automatically notify|auth oficigl @
el accepts or deny issue request
official wants to view issups Aty Teear!
of Issue
" \\‘
(ﬂsmm“ y (fissueis acoopted)
lisplay I =
i o
s

ify toch fieam N
Pass On o Another Team e Wk
on Issue

FaY s issue is worked on

.chmu- Status To In progress
Update lssue Details

§

Service Contracts

Our Contracts

Class Diagram

https://stackedit.io/app# 4/12

7/28/22, 7:03 PM StackEdit

- [CasTieRsandior dolteTickstHandier
v
IE.. vanm-_u

UpdateTickstStatusHandier

STickeit ocatonianier
updateTicketCostandier I riandior

@

Trace-ability Matrix

Requirement Priority Reigstration System Ticket Creation System Ticket Viewing System Ticket Update System City Official System Technician Team System
11 2%

2 1 X

1.3
2.1
2.5
31
3.1.1
3.1.2
3.1.3
4
Sk
5.1.2
6

U W W s W R e
=

User Stories

https://stackedit.io/app# 512

7/28/22, 7:03 PM StackEdit

Epic User Story Template

|Epic User stories Acceptance criteria

User story 1 As a public user, I want to create anissue so thatl can keep |Given that| create anissue in the application, when | have created the issue, then my

up to date with its changes issue should be displayed to me and viewable to others
|Epic 1: Public User story 2 As a public user, | want to pin a location to a task so that 1 can |Given that| pin a location to my issue, when the issue is being created, then my issue
more accurately represent my issues location. shouid be visible to others in the same area
User story 3 As a public user, | want to view other issues in my area so that |Given that | load my surrounding areas map, when | view the area around me, then any
| can view any issues in my surroundings. issues around me should be represented.
As a public user, | want to upvate a selected issue so thatl Given that | upvote an issue, when | select an issue | wish to upvote, then this issue
User Story 4 |can give this issue a higher priority should be presented before other issues |
As a public user, | want to select anissue so thatl canview | Given that| select an issue, when given the option fo, then the the details of the issue
\User Stary 5! |more details about the issue. should be displayed
esasons: As a cify official, | want to view public created issues so that| |Given that there are issues to view, when the city official view is loaded, then issues
can select issues to dispatch to technician teams. should be displayed to the city official.
- - As a cify official, | want to be able o sort issues by ticket filters |Given that there are issues with priorities, when displaying fickets, then | should be
|Epic 2: City Officials tseislon 2 so that | can more easily prioritise some fickets. able to filter these options
User siory 3 As a city official, | want to receive notifications of new tickets so Giv.en that a new ficket is created, when the issue is sent, then there should be a
| |that | can be aware of possible new higher prionty issues nofification to the city official alerfing them of the new fickets.
Asateclinicatusel lwant io: socepethigec ieqesisSo Given that an issue Is dispatched by a city official, when the issue is received, then |
User story 1 that | can provide updates on work or pass an issue on to

N should be able to accept or reject the issue as a task
|another tech team

|Epic 3: Technician Team

Architecture

In this section we will discuss the architectures that our system will use.

Design Strategy

Our architectural design strategy choice was to use the decompositional strategy. This
strategy means that we are able to generate our approach to choosing architectural
patterns by reducing our use cases into sub-systems and identifying suitable architectural

patterns to suit the needs of the specific sub-system.

Styles

There are two primary choices of styles that we would like to represent in our system:

1. Service-Oriented Architectures. This style was chosen as the system will need to
communicate with an API and to a shared database. Each of these will need to act as
a service consumer and sometimes as a service provider. The system will also need to
integrate some Al technologies which may not be written in the same language as

front-end services or the system API.

https://stackedit.io/app# 6/12

7/28/22, 7:03 PM

2.

StackEdit
Layered Architectures. This style lends itself directly to scalability. We intend to use

this style to facilitate many users.

Quality Requirements

1.

4.

Scalability

1.1. The system must be able to service requests from up to 100 000 users within 10

seconds.

1.2. The system must have a serviceable (meaning providing an application which
meets core requirements) to the following Operating Systems including Windows,
MacOs, Android and 10S.

1.3. The system should allow for a database to be able to hold up to 100 000 entries.
. Reliability

2.1. The system must not, in the case of an unexpected event, lose user information.

2.2. The system must not, in the case of an unexpected event, lost ticket information.

2.3. The system should be usable again within 30 minutes of an unexpected event.
2.4. There should not be a time where the system is unavailable except for an

unexpected event.

. Maintainability

3.1. Each application should run independent of one another meaning that if one
application were to be disabled or not run that other applications should be usable.
Security

4.1. Every password stored should be hashed.

4.2. Every password should have salt added to it and this salt should be hashed and
stored.

4.3. Every input that would send a query through to a database should be sanitized.
4.4. A password hash should have an efficiency of 80% over 10 000 entry attempts.

. Usability

5.1. Every page which is presented to a user will have a back button.

5.2. No page presented to a user will contain any dead links.

5.3. No page should have overlapping content at any screen size.

5.4. Within an application every page should be reachable using button navigation.

5.5. On any page text should not be obscured by colours of backgrounds.

5.6. No button which produces a pop-up will not contain a back button to navigate to

a previous page.

https://stackedit.io/app#

712

7/28/22, 7:03 PM

6. Modularity

6.1. A new application with no API end-points and a hello world entry page should be

StackEdit

able to be generated within an hour.

6.2. Removing a relation from a schema should not effect CRUD operations

performed on another relation where the deleted relation was not used to obtain an

identifier in the other relation.

Design & Pattern

Below is a visual representation of our entire systems architecture:

Citizen Client

ul
Updates
Uses | Sees

— Model
Changes

|

Controller MvC

Architecture

Main Al

Program
citzen || Attherised |/ rochnician | main
Subroutines Subroutines | Program and
Subroutines Subroutine
Archiecture

Al Module

Authorised Official Client

Uses I Sees

ul

Updates

‘ Controller H Model Ve
Changes Architecture

|

Technician Team Client

Updates
Uses | Sees

Controller Model VG
Changes i

APl

4{

Gitizen
Subroutines|

Main Al
Program

I

Time.

|

}_‘

Estimated

Estimated | Main

Cost

‘ Presentation Layer

Main Al
Program
Authorised

Official
Subroutines

Main
Program and
Subroutine
A

Suggested
Subtasks

Gitizen
Subroutines|

Al Module
Application Layer

Application Layer

3 Layer Architecture

A brief re-explanation of the system should be given before continuing. Above we see 3

separate clients being represented which all communicate with the same centralised

database. These clients are each 2 layered architectures and each client performs its own

operations. Each client, while having a similar structure, each are present to serve a

different user of the system.

From here we will present an explanation for each architecture.

1. The use of a layered architecture allows us to separate our front-end sub-systems

from our application layers sub-systems. This provides scalability as more layers can

be introduced and flexibility as changes need only be made in their specific layer.

https://stackedit.io/app#

8/12

7/28/22, 7:03 PM StackEdit
2. For our presentation layer we are using an MVC architecture to manage our front-end
systems and provide an up to date view for our users. Using an MVC architecture also
allows for modular updates and contributes towards our quick loading client.
3. The system will require some Al functionality at each client and to service this we are
using a main program and subroutine architecture. This architecture enables us to

have one main Al program that can easily be added to and modified.
Constraints

1. Clients developed should be cross-platform. Mobile applications should service both
IOS and Android while web clients should service Windows and MacOS
2. The architecture that is chosen should be easily scalable.

3. The system should be able to be hosted using cloud services.

Technology Choices

Here we wish to discuss the different technologies that we will be using and how these
technologies were chosen in comparison to some of their counterparts. The intended
architecture that we wish to use and its impact will be highlighted in our decision. We have

split the technologies we wish to use to different layers
Front End

The choices which were considered for our front-end system were:

1. Angular)S

o Angular is an open source front-end framework renowned for its efficiency.

o Pros - Reusable components, two-way data binding, allows for dependency
injection and creates responsive websites.

o Cons - Limited SEO options.

o How does the technology fit within our architecture? Angular integrates
incredibly well with layered systems as its self contained nature can be
described in the application layer. React lends is also easily modifiable to service
our SOA style.

https://stackedit.io/app# 9/12

7/28/22, 7:03 PM StackEdit

2. ReactJS
o React is an open source Ul creator by means of using Ul components.
o Pros - Reusable components, create responsive websites.
o Cons - Poor Documentation and limited SEO options.
o How does the technology fit within our architecture? ReactJS allows for similar

scalability to Angular thus integrating well with our design style.

3. BackBone.js
o Backbone is a JS library providing key-value binding and custom events.
o Pros - Lightweight, custom events and more easily communicate with API.
o Cons - Slow and high debugging difficulty.

o How does the technology fit within our architecture?

Our final choice was to use Angular)S as this fits with both of our Architectural Styles and

will scale effectively while also fitting into a layer of our layered architectural pattern.

Back-end

The choices which were considered for our back-end system were:

1. NestJS

o This is a NodelS framework which facilitates the building of server side
applications built towards a specific standard or with a specific structure in
mind.

o Pros - Easily test code, easily customisable APl endpoints and is self-contained.

o Cons - Complexity and potential difficulty debugging.

o How does the technology fit within our architecture? NestJS meets modularity
as a quality requirement concern and is very scalable with how easy it is to
generate and interact with code.

2. NodeJS

o This is a back-end runtime environment built on JS to serve application.

o Pros - Asynchronous calls, NPM package manager and large support.

o Cons - Single Processor optimised, large number of nested callbacks and
difficulty with relational DB.

o How does the technology fit within our architecture? NodelJS, being a
foundation for NestJS, offers similar benefits but is not as scalable and can

affect usability when longer operations are performed.

https://stackedit.io/app#

10/12

7/28/22, 7:03 PM StackEdit
3. ExpressJS

o This is a NodelS framework which facilitates the building of server side
applications in a customisable and efficient manner.

o Pros - Well documented, very flexible and widely supported.

o Cons - Must be strictly maintained to avoid structural issues.

o How does the technology fit within our architecture? ExpressJS is quite similar
to NestJS in that both offer a solution to NodelJS fallbacks however ExpressJS
allows a user more potential complexity with higher scale and integrating more
features as any pattern can be used to extend your system which can affect
efficiency of the system.

The choice here was primarily between NestJS and ExpressJS as the functionality which
they provide in addition to NodeJs is essential to our system. Finally our decided
technology was to use NestJS as it relates to our styles, strategies and patterns well while

also integrating well with AngularJS.

Database

1. PostgreSQL
o This is a Relational DB Management System (RDBMS).
o Pros - Highly expandable, SQL standard compliant and has complex data types.
o Cons - Potentially low entry reading speeds.
o How does the technology fit within our architecture? PostgreSQL offers largely
scalable and efficient database creation and access while being reliable.
2. MongoDB
o Document-Oriented database program. Structured documents with optional
relations are used to generate database.
o Pros - Wide range of supported languages, high speed and simple to use.
o Cons - Joining tables for queries, limited size and high memory usage.
o How does the technology fit within our architecture? MongoDB prioritises
efficiency and usability.
3. MySQL
o This is a Relational DB Management System (RDBMS).
o Pros - Multi-platform and portable.

o Cons - Large databases are inefficient, prone to data corruption.

https://stackedit.io/app#

11/12

7/28/22, 7:03 PM StackEdit
o How does the technology fit within our architecture? MySQL offers usability

and simplistic querying.

Finally our decision was to use PostgreSQL as reliability is essential to our system and any
efficiency trade off that would be gained by using MongoDB is outweighed by the
scalability of PostGreSQL.

https://stackedit.io/app# 12/12

