-
Notifications
You must be signed in to change notification settings - Fork 6
/
infer.rs
1554 lines (1383 loc) · 54.8 KB
/
infer.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Inference for extension requirements on nodes of a hugr.
//!
//! Checks if the extensions requirements have a solution in terms of some
//! number of starting variables, and comes up with concrete solutions when
//! possible.
//!
//! Open extension variables can come from toplevel nodes: notionally "inputs"
//! to the graph where being wired up to a larger hugr would provide the
//! information needed to solve variables. When extension requirements of nodes
//! depend on these open variables, then the validation check for extensions
//! will succeed regardless of what the variable is instantiated to.
use super::{ExtensionId, ExtensionSet};
use crate::{
hugr::views::HugrView,
ops::{OpTag, OpTrait},
types::EdgeKind,
Direction, Node,
};
use super::validate::ExtensionError;
use petgraph::graph as pg;
use std::collections::{HashMap, HashSet};
use thiserror::Error;
/// A mapping from nodes on the hugr to extension requirement sets which have
/// been inferred for their inputs.
pub type ExtensionSolution = HashMap<Node, ExtensionSet>;
/// Infer extensions for a hugr. This is the main API exposed by this module
///
/// Return a tuple of the solutions found for locations on the graph, and a
/// closure: a solution which would be valid if all of the variables in the graph
/// were instantiated to an empty extension set. This is used (by validation) to
/// concretise the extension requirements of the whole hugr.
pub fn infer_extensions(
hugr: &impl HugrView,
) -> Result<(ExtensionSolution, ExtensionSolution), InferExtensionError> {
let mut ctx = UnificationContext::new(hugr);
let solution = ctx.main_loop()?;
ctx.instantiate_variables();
let closed_solution = ctx.main_loop()?;
let closure: ExtensionSolution = closed_solution
.into_iter()
.filter(|(node, _)| !solution.contains_key(node))
.collect();
Ok((solution, closure))
}
/// Metavariables don't need much
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
struct Meta(u32);
impl Meta {
pub fn new(m: u32) -> Self {
Meta(m)
}
}
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
/// Things we know about metavariables
enum Constraint {
/// A variable has the same value as another variable
Equal(Meta),
/// Variable extends the value of another by one extension
Plus(ExtensionId, Meta),
}
#[derive(Debug, Clone, PartialEq, Error)]
/// Errors which arise during unification
pub enum InferExtensionError {
#[error("Mismatched extension sets {expected} and {actual}")]
/// We've solved a metavariable, then encountered a constraint
/// that says it should be something other than our solution
MismatchedConcrete {
/// The solution we were trying to insert for this meta
expected: ExtensionSet,
/// The incompatible solution that we found was already there
actual: ExtensionSet,
},
#[error("Solved extensions {expected} at {expected_loc:?} and {actual} at {actual_loc:?} should be equal.")]
/// A version of the above with info about which nodes failed to unify
MismatchedConcreteWithLocations {
/// Where the solution we want to insert came from
expected_loc: (Node, Direction),
/// The solution we were trying to insert for this meta
expected: ExtensionSet,
/// Which node we're trying to add a solution for
actual_loc: (Node, Direction),
/// The incompatible solution that we found was already there
actual: ExtensionSet,
},
/// A variable went unsolved that wasn't related to a parameter
#[error("Unsolved variable at location {:?}", location)]
Unsolved {
/// The location on the hugr that's associated to the unsolved meta
location: (Node, Direction),
},
/// An extension mismatch between two nodes which are connected by an edge.
/// This should mirror (or reuse) `ValidationError`'s SrcExceedsTgtExtensions
/// and TgtExceedsSrcExtensions
#[error("Edge mismatch: {0}")]
EdgeMismatch(#[from] ExtensionError),
}
/// A graph of metavariables which we've found equality constraints for. Edges
/// between nodes represent equality constraints.
struct EqGraph {
equalities: pg::Graph<Meta, (), petgraph::Undirected>,
node_map: HashMap<Meta, pg::NodeIndex>,
}
impl EqGraph {
/// Create a new `EqGraph`
fn new() -> Self {
EqGraph {
equalities: pg::Graph::new_undirected(),
node_map: HashMap::new(),
}
}
/// Add a metavariable to the graph as a node and return the `NodeIndex`.
/// If it's already there, just return the existing `NodeIndex`
fn add_or_retrieve(&mut self, m: Meta) -> pg::NodeIndex {
self.node_map.get(&m).cloned().unwrap_or_else(|| {
let ix = self.equalities.add_node(m);
self.node_map.insert(m, ix);
ix
})
}
/// Create an edge between two nodes on the graph, declaring that they stand
/// for metavariables which should be equal.
fn register_eq(&mut self, src: Meta, tgt: Meta) {
let src_ix = self.add_or_retrieve(src);
let tgt_ix = self.add_or_retrieve(tgt);
self.equalities.add_edge(src_ix, tgt_ix, ());
}
/// Return the connected components of the graph in terms of metavariables
fn ccs(&self) -> Vec<Vec<Meta>> {
petgraph::algo::tarjan_scc(&self.equalities)
.into_iter()
.map(|cc| {
cc.into_iter()
.map(|n| *self.equalities.node_weight(n).unwrap())
.collect()
})
.collect()
}
}
/// Our current knowledge about the extensions of the graph
struct UnificationContext {
/// A list of constraints for each metavariable
constraints: HashMap<Meta, HashSet<Constraint>>,
/// A map which says which nodes correspond to which metavariables
extensions: HashMap<(Node, Direction), Meta>,
/// Solutions to metavariables
solved: HashMap<Meta, ExtensionSet>,
/// A graph which says which metavariables should be equal
eq_graph: EqGraph,
/// A mapping from metavariables which have been merged, to the meta they've
// been merged to
shunted: HashMap<Meta, Meta>,
/// Variables we're allowed to include in solutionss
variables: HashSet<Meta>,
/// A name for the next metavariable we create
fresh_name: u32,
}
/// Invariant: Constraint::Plus always points to a fresh metavariable
impl UnificationContext {
/// Create a new unification context, and populate it with constraints from
/// traversing the hugr which is passed in.
pub fn new(hugr: &impl HugrView) -> Self {
let mut ctx = Self {
constraints: HashMap::new(),
extensions: HashMap::new(),
solved: HashMap::new(),
eq_graph: EqGraph::new(),
shunted: HashMap::new(),
variables: HashSet::new(),
fresh_name: 0,
};
ctx.gen_constraints(hugr);
ctx
}
/// Create a fresh metavariable, and increment `fresh_name` for next time
fn fresh_meta(&mut self) -> Meta {
let fresh = Meta::new(self.fresh_name);
self.fresh_name += 1;
self.constraints.insert(fresh, HashSet::new());
fresh
}
/// Declare a constraint on the metavariable
fn add_constraint(&mut self, m: Meta, c: Constraint) {
self.constraints.entry(m).or_default().insert(c);
}
/// Declare that a meta has been solved
fn add_solution(&mut self, m: Meta, rs: ExtensionSet) {
let existing_sol = self.solved.insert(m, rs);
debug_assert!(existing_sol.is_none());
}
/// If a metavariable has been merged, return the new meta, otherwise return
/// the same meta.
///
/// This could loop if there were a cycle in the `shunted` list, but there
/// shouldn't be, because we only ever shunt to *new* metas.
fn resolve(&self, m: Meta) -> Meta {
self.shunted.get(&m).cloned().map_or(m, |m| self.resolve(m))
}
/// Get the relevant constraints for a metavariable. If it's been merged,
/// get the constraints for the merged metavariable
fn get_constraints(&self, m: &Meta) -> Option<&HashSet<Constraint>> {
self.constraints.get(&self.resolve(*m))
}
/// Get the relevant solution for a metavariable. If it's been merged, get
/// the solution for the merged metavariable
fn get_solution(&self, m: &Meta) -> Option<&ExtensionSet> {
self.solved.get(&self.resolve(*m))
}
/// Convert an extension *set* difference in terms of a sequence of fresh
/// metas with `Plus` constraints which each add only one extension req.
fn gen_union_constraint(&mut self, input: Meta, output: Meta, delta: ExtensionSet) {
let mut last_meta = input;
// Create fresh metavariables with `Plus` constraints for
// each extension that should be added by the node
// Hence a extension delta [A, B] would lead to
// > ma = fresh_meta()
// > add_constraint(ma, Plus(a, input)
// > mb = fresh_meta()
// > add_constraint(mb, Plus(b, ma)
// > add_constraint(output, Equal(mb))
for r in delta.0.into_iter() {
let curr_meta = self.fresh_meta();
self.add_constraint(curr_meta, Constraint::Plus(r, last_meta));
last_meta = curr_meta;
}
self.add_constraint(output, Constraint::Equal(last_meta));
}
/// Return the metavariable corresponding to the given location on the
/// graph, either by making a new meta, or looking it up
fn make_or_get_meta(&mut self, node: Node, dir: Direction) -> Meta {
if let Some(m) = self.extensions.get(&(node, dir)) {
*m
} else {
let m = self.fresh_meta();
self.extensions.insert((node, dir), m);
m
}
}
/// Iterate over the nodes in a hugr and generate unification constraints
fn gen_constraints<T>(&mut self, hugr: &T)
where
T: HugrView,
{
if hugr.root_type().signature().is_none() {
let m_input = self.make_or_get_meta(hugr.root(), Direction::Incoming);
self.variables.insert(m_input);
}
for node in hugr.nodes() {
let m_input = self.make_or_get_meta(node, Direction::Incoming);
let m_output = self.make_or_get_meta(node, Direction::Outgoing);
let node_type = hugr.get_nodetype(node);
// Add constraints for the inputs and outputs of dataflow nodes according
// to the signature of the parent node
if let Some([input, output]) = hugr.get_io(node) {
for dir in Direction::BOTH {
let m_input_node = self.make_or_get_meta(input, dir);
self.add_constraint(m_input_node, Constraint::Equal(m_input));
let m_output_node = self.make_or_get_meta(output, dir);
self.add_constraint(m_output_node, Constraint::Equal(m_output));
}
}
if hugr.get_optype(node).tag() == OpTag::Conditional {
for case in hugr.children(node) {
let m_case_in = self.make_or_get_meta(case, Direction::Incoming);
let m_case_out = self.make_or_get_meta(case, Direction::Outgoing);
self.add_constraint(m_case_in, Constraint::Equal(m_input));
self.add_constraint(m_case_out, Constraint::Equal(m_output));
}
}
if node_type.tag() == OpTag::Cfg {
let mut children = hugr.children(node);
let entry = children.next().unwrap();
let exit = children.next().unwrap();
let m_entry = self.make_or_get_meta(entry, Direction::Incoming);
let m_exit = self.make_or_get_meta(exit, Direction::Outgoing);
self.add_constraint(m_input, Constraint::Equal(m_entry));
self.add_constraint(m_output, Constraint::Equal(m_exit));
}
match node_type.signature() {
// Input extensions are open
None => {
self.gen_union_constraint(
m_input,
m_output,
node_type.op_signature().extension_reqs,
);
}
// We have a solution for everything!
Some(sig) => {
self.add_solution(m_output, sig.output_extensions());
self.add_solution(m_input, sig.input_extensions);
}
}
}
// Separate loop so that we can assume that a metavariable has been
// added for every (Node, Direction) in the graph already.
for tgt_node in hugr.nodes() {
let sig = hugr.get_nodetype(tgt_node).op();
// Incoming ports with an edge that should mean equal extension reqs
for port in hugr.node_inputs(tgt_node).filter(|src_port| {
matches!(
sig.port_kind(*src_port),
Some(EdgeKind::Value(_))
| Some(EdgeKind::Static(_))
| Some(EdgeKind::ControlFlow)
)
}) {
let m_tgt = *self
.extensions
.get(&(tgt_node, Direction::Incoming))
.unwrap();
for (src_node, _) in hugr.linked_ports(tgt_node, port) {
let m_src = self
.extensions
.get(&(src_node, Direction::Outgoing))
.unwrap();
self.add_constraint(*m_src, Constraint::Equal(m_tgt));
}
}
}
}
/// When trying to unify two metas, check if they both correspond to
/// different ends of the same wire. If so, return an `ExtensionError`.
/// Otherwise check whether they both correspond to *some* location on the
/// graph and include that info the otherwise generic `MismatchedConcrete`.
fn report_mismatch(
&self,
m1: Meta,
m2: Meta,
rs1: ExtensionSet,
rs2: ExtensionSet,
) -> InferExtensionError {
let loc1 = self
.extensions
.iter()
.find(|(_, m)| **m == m1 || self.resolve(**m) == m1)
.map(|a| a.0);
let loc2 = self
.extensions
.iter()
.find(|(_, m)| **m == m2 || self.resolve(**m) == m2)
.map(|a| a.0);
if let (Some((node1, dir1)), Some((node2, dir2))) = (loc1, loc2) {
// N.B. We're looking for the case where an equality constraint
// arose because the two locations are connected by an edge
// If the directions are the same, they shouldn't be connected
// to each other. If the nodes are the same, there's no edge!
//
// TODO: It's still possible that the equality constraint
// arose because one node is a dataflow parent and the other
// is one of it's I/O nodes. In that case, the directions could be
// the same, and we should try to detect it
if dir1 != dir2 && node1 != node2 {
let [(src, src_rs), (tgt, tgt_rs)] = if *dir2 == Direction::Incoming {
[(node1, rs1.clone()), (node2, rs2.clone())]
} else {
[(node2, rs2.clone()), (node1, rs1.clone())]
};
return InferExtensionError::EdgeMismatch(if src_rs.is_subset(&tgt_rs) {
ExtensionError::TgtExceedsSrcExtensions {
from: *src,
from_extensions: src_rs,
to: *tgt,
to_extensions: tgt_rs,
}
} else {
ExtensionError::SrcExceedsTgtExtensions {
from: *src,
from_extensions: src_rs,
to: *tgt,
to_extensions: tgt_rs,
}
});
}
}
if let (Some(loc1), Some(loc2)) = (loc1, loc2) {
InferExtensionError::MismatchedConcreteWithLocations {
expected_loc: *loc1,
expected: rs1,
actual_loc: *loc2,
actual: rs2,
}
} else {
InferExtensionError::MismatchedConcrete {
expected: rs1,
actual: rs2,
}
}
}
/// Take a group of equal metas and merge them into a new, single meta.
///
/// Returns the set of new metas created and the set of metas that were
/// merged.
fn merge_equal_metas(&mut self) -> Result<(HashSet<Meta>, HashSet<Meta>), InferExtensionError> {
let mut merged: HashSet<Meta> = HashSet::new();
let mut new_metas: HashSet<Meta> = HashSet::new();
for cc in self.eq_graph.ccs().into_iter() {
// Within a connected component everything is equal
let combined_meta = self.fresh_meta();
for m in cc.iter() {
// The same meta shouldn't be shunted twice directly. Only
// transitively, as we still process the meta it was shunted to
if self.shunted.contains_key(m) {
continue;
}
if let Some(cs) = self.constraints.remove(m) {
for c in cs
.iter()
.filter(|c| !matches!(c, Constraint::Equal(_)))
.cloned()
.collect::<Vec<_>>()
.into_iter()
{
self.add_constraint(combined_meta, c.clone());
}
merged.insert(*m);
// Record a new meta the first time that we use it; don't
// bother recording a new meta if we don't add any
// constraints. It should be safe to call this multiple times
new_metas.insert(combined_meta);
}
// Here, solved.get is equivalent to get_solution, because if
// `m` had already been shunted, we wouldn't skipped it
if let Some(solution) = self.solved.get(m) {
match self.solved.get(&combined_meta) {
Some(existing_solution) => {
if solution != existing_solution {
return Err(self.report_mismatch(
*m,
combined_meta,
solution.clone(),
existing_solution.clone(),
));
}
}
None => {
self.solved.insert(combined_meta, solution.clone());
}
}
}
if self.variables.contains(m) {
self.variables.insert(combined_meta);
self.variables.remove(m);
}
self.shunted.insert(*m, combined_meta);
}
}
Ok((new_metas, merged))
}
/// Inspect the constraints of a given metavariable and try to find a
/// solution based on those.
/// Returns whether a solution was found
fn solve_meta(&mut self, meta: Meta) -> Result<bool, InferExtensionError> {
let mut solved = false;
for c in self.get_constraints(&meta).unwrap().clone().iter() {
match c {
// Just register the equality in the EqGraph, we'll process it later
Constraint::Equal(other_meta) => {
self.eq_graph.register_eq(meta, *other_meta);
}
// N.B. If `meta` is already solved, we can't use that
// information to solve `other_meta`. This is because the Plus
// constraint only signifies a preorder.
// I.e. if meta = other_meta + 'R', it's still possible that the
// solution is meta = other_meta because we could be adding 'R'
// to a set which already contained it.
Constraint::Plus(r, other_meta) => {
if let Some(rs) = self.get_solution(other_meta) {
let mut rrs = rs.clone();
rrs.insert(r);
match self.get_solution(&meta) {
// Let's check that this is right?
Some(rs) => {
if rs != &rrs {
return Err(self.report_mismatch(
meta,
*other_meta,
rs.clone(),
rrs,
));
}
}
None => {
self.add_solution(meta, rrs);
solved = true;
}
};
};
}
}
}
Ok(solved)
}
/// Tries to return concrete extensions for each node in the graph. This only
/// works when there are no variables in the graph!
///
/// What we really want is to give the concrete extensions where they're
/// available. When there are variables, we should leave the graph as it is,
/// but make sure that no matter what they're instantiated to, the graph
/// still makes sense (should pass the extension validation check)
pub fn results(&self) -> Result<ExtensionSolution, InferExtensionError> {
// Check that all of the metavariables associated with nodes of the
// graph are solved
let mut results: ExtensionSolution = HashMap::new();
for (loc, meta) in self.extensions.iter() {
if let Some(rs) = self.get_solution(meta) {
if loc.1 == Direction::Incoming {
results.insert(loc.0, rs.clone());
}
} else if self.live_var(meta).is_some() {
// If it depends on some other live meta, that's bad news.
return Err(InferExtensionError::Unsolved { location: *loc });
}
// If it only depends on graph variables, then we don't have
// a *solution*, but it's fine
}
debug_assert!(self.live_metas().is_empty());
Ok(results)
}
// Get the live var associated with a meta.
// TODO: This should really be a list
fn live_var(&self, m: &Meta) -> Option<Meta> {
if self.variables.contains(m) || self.variables.contains(&self.resolve(*m)) {
return None;
}
// TODO: We should be doing something to ensure that these are the same check...
if self.get_solution(m).is_none() {
if let Some(cs) = self.get_constraints(m) {
for c in cs {
match c {
Constraint::Plus(_, m) => return self.live_var(m),
_ => panic!("we shouldn't be here!"),
}
}
}
Some(*m)
} else {
None
}
}
/// Return the set of "live" metavariables in the context.
/// "Live" here means a metavariable:
/// - Is associated to a location in the graph in `UnifyContext.extensions`
/// - Is still unsolved
/// - Isn't a variable
fn live_metas(&self) -> HashSet<Meta> {
self.extensions
.values()
.filter_map(|m| self.live_var(m))
.filter(|m| !self.variables.contains(m))
.collect()
}
/// Iterates over a set of metas (the argument) and tries to solve
/// them.
/// Returns the metas that we solved
fn solve_constraints(
&mut self,
vars: &HashSet<Meta>,
) -> Result<HashSet<Meta>, InferExtensionError> {
let mut solved = HashSet::new();
for m in vars.iter() {
if self.solve_meta(*m)? {
solved.insert(*m);
}
}
Ok(solved)
}
/// Once the unification context is set up, attempt to infer ExtensionSets
/// for all of the metavariables in the `UnificationContext`.
///
/// Return a mapping from locations in the graph to concrete `ExtensionSets`
/// where it was possible to infer them. If it wasn't possible to infer a
/// *concrete* `ExtensionSet`, e.g. if the ExtensionSet relies on an open
/// variable in the toplevel graph, don't include that location in the map
pub fn main_loop(&mut self) -> Result<ExtensionSolution, InferExtensionError> {
let mut remaining = HashSet::<Meta>::from_iter(self.constraints.keys().cloned());
// Keep going as long as we're making progress (= merging and solving nodes)
loop {
// Try to solve metas with the information we have now. This may
// register new equalities on the EqGraph
let to_delete = self.solve_constraints(&remaining)?;
// Merge metas based on the equalities we just registered
let (new, merged) = self.merge_equal_metas()?;
// All of the metas for which we've made progress
let delta: HashSet<Meta> = HashSet::from_iter(to_delete.union(&merged).cloned());
// Clean up dangling constraints on solved metavariables
to_delete.iter().for_each(|m| {
self.constraints.remove(m);
});
// Remove solved and merged metas from remaining "to solve" list
delta.iter().for_each(|m| {
remaining.remove(m);
});
// If we made no progress, we're done!
if delta.is_empty() && new.is_empty() {
break;
}
remaining.extend(new)
}
self.results()
}
/// Instantiate all variables in the graph with the empty extension set.
/// Instantiate all variables in the graph with the empty extension set, or
/// the smallest solution possible given their constraints.
/// This is done to solve metas which depend on variables, which allows
/// us to come up with a fully concrete solution to pass into validation.
pub fn instantiate_variables(&mut self) {
for m in self.variables.clone().into_iter() {
if !self.solved.contains_key(&m) {
// Handle the case where the constraints for `m` contain a self
// reference, i.e. "m = Plus(E, m)", in which case the variable
// should be instantiated to E rather than the empty set.
let solution =
ExtensionSet::from_iter(self.get_constraints(&m).unwrap().iter().filter_map(
|c| match c {
// If `m` has been merged, [`self.variables`] entry
// will have already been updated to the merged
// value by [`self.merge_equal_metas`] so we don't
// need to worry about resolving it.
Constraint::Plus(x, other_m) if m == self.resolve(*other_m) => {
Some(x.clone())
}
_ => None,
},
));
self.add_solution(m, solution);
}
}
self.variables = HashSet::new();
}
}
#[cfg(test)]
mod test {
use std::error::Error;
use super::*;
use crate::builder::test::closed_dfg_root_hugr;
use crate::extension::{prelude::PRELUDE_REGISTRY, ExtensionSet};
use crate::hugr::{validate::ValidationError, Hugr, HugrMut, HugrView, NodeType};
use crate::macros::const_extension_ids;
use crate::ops::OpType;
use crate::ops::{self, dataflow::IOTrait, handle::NodeHandle, OpTrait};
use crate::type_row;
use crate::types::{FunctionType, Type, TypeRow};
use cool_asserts::assert_matches;
use itertools::Itertools;
use portgraph::NodeIndex;
const NAT: Type = crate::extension::prelude::USIZE_T;
const_extension_ids! {
const A: ExtensionId = "A";
const B: ExtensionId = "B";
const C: ExtensionId = "C";
const UNKNOWN_EXTENSION: ExtensionId = "Unknown";
}
#[test]
// Build up a graph with some holes in its extension requirements, and infer
// them.
fn from_graph() -> Result<(), Box<dyn Error>> {
let rs = ExtensionSet::from_iter([A, B, C]);
let main_sig =
FunctionType::new(type_row![NAT, NAT], type_row![NAT]).with_extension_delta(&rs);
let op = ops::DFG {
signature: main_sig,
};
let root_node = NodeType::new_open(op);
let mut hugr = Hugr::new(root_node);
let input = ops::Input::new(type_row![NAT, NAT]);
let output = ops::Output::new(type_row![NAT]);
let input = hugr.add_op_with_parent(hugr.root(), input)?;
let output = hugr.add_op_with_parent(hugr.root(), output)?;
assert_matches!(hugr.get_io(hugr.root()), Some(_));
let add_a_sig = FunctionType::new(type_row![NAT], type_row![NAT])
.with_extension_delta(&ExtensionSet::singleton(&A));
let add_b_sig = FunctionType::new(type_row![NAT], type_row![NAT])
.with_extension_delta(&ExtensionSet::singleton(&B));
let add_ab_sig = FunctionType::new(type_row![NAT], type_row![NAT])
.with_extension_delta(&ExtensionSet::from_iter([A, B]));
let mult_c_sig = FunctionType::new(type_row![NAT, NAT], type_row![NAT])
.with_extension_delta(&ExtensionSet::singleton(&C));
let add_a = hugr.add_op_with_parent(
hugr.root(),
ops::DFG {
signature: add_a_sig,
},
)?;
let add_b = hugr.add_op_with_parent(
hugr.root(),
ops::DFG {
signature: add_b_sig,
},
)?;
let add_ab = hugr.add_op_with_parent(
hugr.root(),
ops::DFG {
signature: add_ab_sig,
},
)?;
let mult_c = hugr.add_op_with_parent(
hugr.root(),
ops::DFG {
signature: mult_c_sig,
},
)?;
hugr.connect(input, 0, add_a, 0)?;
hugr.connect(add_a, 0, add_b, 0)?;
hugr.connect(add_b, 0, mult_c, 0)?;
hugr.connect(input, 1, add_ab, 0)?;
hugr.connect(add_ab, 0, mult_c, 1)?;
hugr.connect(mult_c, 0, output, 0)?;
let (_, closure) = infer_extensions(&hugr)?;
let empty = ExtensionSet::new();
let ab = ExtensionSet::from_iter([A, B]);
assert_eq!(*closure.get(&(hugr.root())).unwrap(), empty);
assert_eq!(*closure.get(&(mult_c)).unwrap(), ab);
assert_eq!(*closure.get(&(add_ab)).unwrap(), empty);
assert_eq!(*closure.get(&add_b).unwrap(), ExtensionSet::singleton(&A));
Ok(())
}
#[test]
// Basic test that the `Plus` constraint works
fn plus() -> Result<(), InferExtensionError> {
let hugr = Hugr::default();
let mut ctx = UnificationContext::new(&hugr);
let metas: Vec<Meta> = (2..8)
.map(|i| {
let meta = ctx.fresh_meta();
ctx.extensions
.insert((NodeIndex::new(i).into(), Direction::Incoming), meta);
meta
})
.collect();
ctx.solved.insert(metas[2], ExtensionSet::singleton(&A));
ctx.add_constraint(metas[1], Constraint::Equal(metas[2]));
ctx.add_constraint(metas[0], Constraint::Plus(B, metas[2]));
ctx.add_constraint(metas[4], Constraint::Plus(C, metas[0]));
ctx.add_constraint(metas[3], Constraint::Equal(metas[4]));
ctx.add_constraint(metas[5], Constraint::Equal(metas[0]));
ctx.main_loop()?;
let a = ExtensionSet::singleton(&A);
let mut ab = a.clone();
ab.insert(&B);
let mut abc = ab.clone();
abc.insert(&C);
assert_eq!(ctx.get_solution(&metas[0]).unwrap(), &ab);
assert_eq!(ctx.get_solution(&metas[1]).unwrap(), &a);
assert_eq!(ctx.get_solution(&metas[2]).unwrap(), &a);
assert_eq!(ctx.get_solution(&metas[3]).unwrap(), &abc);
assert_eq!(ctx.get_solution(&metas[4]).unwrap(), &abc);
assert_eq!(ctx.get_solution(&metas[5]).unwrap(), &ab);
Ok(())
}
#[test]
// This generates a solution that causes validation to fail
// because of a missing lift node
fn missing_lift_node() -> Result<(), Box<dyn Error>> {
let mut hugr = Hugr::new(NodeType::new_pure(ops::DFG {
signature: FunctionType::new(type_row![NAT], type_row![NAT])
.with_extension_delta(&ExtensionSet::singleton(&A)),
}));
let input = hugr.add_node_with_parent(
hugr.root(),
NodeType::new_pure(ops::Input {
types: type_row![NAT],
}),
)?;
let output = hugr.add_node_with_parent(
hugr.root(),
NodeType::new_pure(ops::Output {
types: type_row![NAT],
}),
)?;
hugr.connect(input, 0, output, 0)?;
// Fail to catch the actual error because it's a difference between I/O
// nodes and their parents and `report_mismatch` isn't yet smart enough
// to handle that.
assert_matches!(
hugr.update_validate(&PRELUDE_REGISTRY),
Err(ValidationError::CantInfer(_))
);
Ok(())
}
#[test]
// Tests that we can succeed even when all variables don't have concrete
// extension sets, and we have an open variable at the start of the graph.
fn open_variables() -> Result<(), InferExtensionError> {
let mut ctx = UnificationContext::new(&Hugr::default());
let a = ctx.fresh_meta();
let b = ctx.fresh_meta();
let ab = ctx.fresh_meta();
// Some nonsense so that the constraints register as "live"
ctx.extensions
.insert((NodeIndex::new(2).into(), Direction::Outgoing), a);
ctx.extensions
.insert((NodeIndex::new(3).into(), Direction::Outgoing), b);
ctx.extensions
.insert((NodeIndex::new(4).into(), Direction::Incoming), ab);
ctx.variables.insert(a);
ctx.variables.insert(b);
ctx.add_constraint(ab, Constraint::Plus(A, b));
ctx.add_constraint(ab, Constraint::Plus(B, a));
let solution = ctx.main_loop()?;
// We'll only find concrete solutions for the Incoming extension reqs of
// the main node created by `Hugr::default`
assert_eq!(solution.len(), 1);
Ok(())
}
#[test]
// Infer the extensions on a child node with no inputs
fn dangling_src() -> Result<(), Box<dyn Error>> {
let rs = ExtensionSet::singleton(&"R".try_into().unwrap());
let mut hugr = closed_dfg_root_hugr(
FunctionType::new(type_row![NAT], type_row![NAT]).with_extension_delta(&rs),
);
let [input, output] = hugr.get_io(hugr.root()).unwrap();
let add_r_sig = FunctionType::new(type_row![NAT], type_row![NAT]).with_extension_delta(&rs);
let add_r = hugr.add_op_with_parent(
hugr.root(),
ops::DFG {
signature: add_r_sig,
},
)?;
// Dangling thingy
let src_sig = FunctionType::new(type_row![], type_row![NAT])
.with_extension_delta(&ExtensionSet::new());
let src = hugr.add_op_with_parent(hugr.root(), ops::DFG { signature: src_sig })?;
let mult_sig = FunctionType::new(type_row![NAT, NAT], type_row![NAT]);
// Mult has open extension requirements, which we should solve to be "R"
let mult = hugr.add_op_with_parent(
hugr.root(),
ops::DFG {
signature: mult_sig,
},
)?;
hugr.connect(input, 0, add_r, 0)?;
hugr.connect(add_r, 0, mult, 0)?;
hugr.connect(src, 0, mult, 1)?;
hugr.connect(mult, 0, output, 0)?;
let closure = hugr.infer_extensions()?;
assert!(closure.is_empty());
assert_eq!(
hugr.get_nodetype(src.node())
.signature()
.unwrap()
.output_extensions(),
rs
);
assert_eq!(
hugr.get_nodetype(mult.node())
.signature()
.unwrap()
.input_extensions,
rs
);
assert_eq!(
hugr.get_nodetype(mult.node())
.signature()
.unwrap()
.output_extensions(),
rs
);
Ok(())
}
#[test]
fn resolve_test() -> Result<(), InferExtensionError> {
let mut ctx = UnificationContext::new(&Hugr::default());
let m0 = ctx.fresh_meta();
let m1 = ctx.fresh_meta();
let m2 = ctx.fresh_meta();
ctx.add_constraint(m0, Constraint::Equal(m1));
ctx.main_loop()?;
let mid0 = ctx.resolve(m0);
assert_eq!(ctx.resolve(m0), ctx.resolve(m1));
ctx.add_constraint(mid0, Constraint::Equal(m2));
ctx.main_loop()?;
assert_eq!(ctx.resolve(m0), ctx.resolve(m2));
assert_eq!(ctx.resolve(m1), ctx.resolve(m2));
assert!(ctx.resolve(m0) != mid0);
Ok(())
}
fn create_with_io(
hugr: &mut Hugr,
parent: Node,
op: impl Into<OpType>,
op_sig: FunctionType,
) -> Result<[Node; 3], Box<dyn Error>> {
let op: OpType = op.into();
let node = hugr.add_op_with_parent(parent, op)?;
let input = hugr.add_op_with_parent(
node,
ops::Input {
types: op_sig.input,
},
)?;
let output = hugr.add_op_with_parent(
node,
ops::Output {
types: op_sig.output,
},
)?;
Ok([node, input, output])
}
#[test]
fn test_conditional_inference() -> Result<(), Box<dyn Error>> {
fn build_case(
hugr: &mut Hugr,
conditional_node: Node,
op: ops::Case,
first_ext: ExtensionId,