forked from keras-team/keras-applications
-
Notifications
You must be signed in to change notification settings - Fork 33
/
mobilenet.py
442 lines (383 loc) · 18.5 KB
/
mobilenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
"""MobileNet v1 models for Keras.
MobileNet is a general architecture and can be used for multiple use cases.
Depending on the use case, it can use different input layer size and
different width factors. This allows different width models to reduce
the number of multiply-adds and thereby
reduce inference cost on mobile devices.
MobileNets support any input size greater than 32 x 32, with larger image sizes
offering better performance.
The number of parameters and number of multiply-adds
can be modified by using the `alpha` parameter,
which increases/decreases the number of filters in each layer.
By altering the image size and `alpha` parameter,
all 16 models from the paper can be built, with ImageNet weights provided.
The paper demonstrates the performance of MobileNets using `alpha` values of
1.0 (also called 100 % MobileNet), 0.75, 0.5 and 0.25.
For each of these `alpha` values, weights for 4 different input image sizes
are provided (224, 192, 160, 128).
The following table describes the size and accuracy of the 100% MobileNet
on size 224 x 224:
----------------------------------------------------------------------------
Width Multiplier (alpha) | ImageNet Acc | Multiply-Adds (M) | Params (M)
----------------------------------------------------------------------------
| 1.0 MobileNet-224 | 70.6 % | 529 | 4.2 |
| 0.75 MobileNet-224 | 68.4 % | 325 | 2.6 |
| 0.50 MobileNet-224 | 63.7 % | 149 | 1.3 |
| 0.25 MobileNet-224 | 50.6 % | 41 | 0.5 |
----------------------------------------------------------------------------
The following table describes the performance of
the 100 % MobileNet on various input sizes:
------------------------------------------------------------------------
Resolution | ImageNet Acc | Multiply-Adds (M) | Params (M)
------------------------------------------------------------------------
| 1.0 MobileNet-224 | 70.6 % | 529 | 4.2 |
| 1.0 MobileNet-192 | 69.1 % | 529 | 4.2 |
| 1.0 MobileNet-160 | 67.2 % | 529 | 4.2 |
| 1.0 MobileNet-128 | 64.4 % | 529 | 4.2 |
------------------------------------------------------------------------
The weights for all 16 models are obtained and translated
from TensorFlow checkpoints found at
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
# Reference
- [MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications](https://arxiv.org/abs/1704.04861)
"""
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import os
import warnings
from . import get_submodules_from_kwargs
from . import imagenet_utils
from .imagenet_utils import decode_predictions
from .imagenet_utils import _obtain_input_shape
BASE_WEIGHT_PATH = ('https://github.com/fchollet/deep-learning-models/'
'releases/download/v0.6/')
backend = None
layers = None
models = None
keras_utils = None
def preprocess_input(x, **kwargs):
"""Preprocesses a numpy array encoding a batch of images.
# Arguments
x: a 4D numpy array consists of RGB values within [0, 255].
# Returns
Preprocessed array.
"""
return imagenet_utils.preprocess_input(x, mode='tf', **kwargs)
def MobileNet(input_shape=None,
alpha=1.0,
depth_multiplier=1,
dropout=1e-3,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000,
**kwargs):
"""Instantiates the MobileNet architecture.
# Arguments
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)`
(with `channels_last` data format)
or (3, 224, 224) (with `channels_first` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
alpha: controls the width of the network. This is known as the
width multiplier in the MobileNet paper.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
depth_multiplier: depth multiplier for depthwise convolution. This
is called the resolution multiplier in the MobileNet paper.
dropout: dropout rate
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
RuntimeError: If attempting to run this model with a
backend that does not support separable convolutions.
"""
global backend, layers, models, keras_utils
backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
if not (weights in {'imagenet', None} or os.path.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
'as true, `classes` should be 1000')
# Determine proper input shape and default size.
if input_shape is None:
default_size = 224
else:
if backend.image_data_format() == 'channels_first':
rows = input_shape[1]
cols = input_shape[2]
else:
rows = input_shape[0]
cols = input_shape[1]
if rows == cols and rows in [128, 160, 192, 224]:
default_size = rows
else:
default_size = 224
input_shape = _obtain_input_shape(input_shape,
default_size=default_size,
min_size=32,
data_format=backend.image_data_format(),
require_flatten=include_top,
weights=weights)
if backend.image_data_format() == 'channels_last':
row_axis, col_axis = (0, 1)
else:
row_axis, col_axis = (1, 2)
rows = input_shape[row_axis]
cols = input_shape[col_axis]
if weights == 'imagenet':
if depth_multiplier != 1:
raise ValueError('If imagenet weights are being loaded, '
'depth multiplier must be 1')
if alpha not in [0.25, 0.50, 0.75, 1.0]:
raise ValueError('If imagenet weights are being loaded, '
'alpha can be one of'
'`0.25`, `0.50`, `0.75` or `1.0` only.')
if rows != cols or rows not in [128, 160, 192, 224]:
rows = 224
warnings.warn('`input_shape` is undefined or non-square, '
'or `rows` is not in [128, 160, 192, 224]. '
'Weights for input shape (224, 224) will be'
' loaded as the default.')
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
x = _conv_block(img_input, 32, alpha, strides=(2, 2))
x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier,
strides=(2, 2), block_id=2)
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier,
strides=(2, 2), block_id=4)
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier,
strides=(2, 2), block_id=6)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)
x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier,
strides=(2, 2), block_id=12)
x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)
if include_top:
if backend.image_data_format() == 'channels_first':
shape = (int(1024 * alpha), 1, 1)
else:
shape = (1, 1, int(1024 * alpha))
x = layers.GlobalAveragePooling2D()(x)
x = layers.Reshape(shape, name='reshape_1')(x)
x = layers.Dropout(dropout, name='dropout')(x)
x = layers.Conv2D(classes, (1, 1),
padding='same',
name='conv_preds')(x)
x = layers.Reshape((classes,), name='reshape_2')(x)
x = layers.Activation('softmax', name='act_softmax')(x)
else:
if pooling == 'avg':
x = layers.GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = layers.GlobalMaxPooling2D()(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = keras_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = models.Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows))
# Load weights.
if weights == 'imagenet':
if alpha == 1.0:
alpha_text = '1_0'
elif alpha == 0.75:
alpha_text = '7_5'
elif alpha == 0.50:
alpha_text = '5_0'
else:
alpha_text = '2_5'
if include_top:
model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
weight_path = BASE_WEIGHT_PATH + model_name
weights_path = keras_utils.get_file(model_name,
weight_path,
cache_subdir='models')
else:
model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
weight_path = BASE_WEIGHT_PATH + model_name
weights_path = keras_utils.get_file(model_name,
weight_path,
cache_subdir='models')
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)
return model
def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)):
"""Adds an initial convolution layer (with batch normalization and relu6).
# Arguments
inputs: Input tensor of shape `(rows, cols, 3)`
(with `channels_last` data format) or
(3, rows, cols) (with `channels_first` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(224, 224, 3)` would be one valid value.
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
alpha: controls the width of the network.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
kernel: An integer or tuple/list of 2 integers, specifying the
width and height of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution
along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
# Input shape
4D tensor with shape:
`(samples, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, rows, cols, channels)` if data_format='channels_last'.
# Output shape
4D tensor with shape:
`(samples, filters, new_rows, new_cols)`
if data_format='channels_first'
or 4D tensor with shape:
`(samples, new_rows, new_cols, filters)`
if data_format='channels_last'.
`rows` and `cols` values might have changed due to stride.
# Returns
Output tensor of block.
"""
channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1
filters = int(filters * alpha)
x = layers.ZeroPadding2D(padding=((0, 1), (0, 1)), name='conv1_pad')(inputs)
x = layers.Conv2D(filters, kernel,
padding='valid',
use_bias=False,
strides=strides,
name='conv1')(x)
x = layers.BatchNormalization(axis=channel_axis, name='conv1_bn')(x)
return layers.ReLU(6., name='conv1_relu')(x)
def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha,
depth_multiplier=1, strides=(1, 1), block_id=1):
"""Adds a depthwise convolution block.
A depthwise convolution block consists of a depthwise conv,
batch normalization, relu6, pointwise convolution,
batch normalization and relu6 activation.
# Arguments
inputs: Input tensor of shape `(rows, cols, channels)`
(with `channels_last` data format) or
(channels, rows, cols) (with `channels_first` data format).
pointwise_conv_filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the pointwise convolution).
alpha: controls the width of the network.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
depth_multiplier: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to `filters_in * depth_multiplier`.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution
along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
block_id: Integer, a unique identification designating
the block number.
# Input shape
4D tensor with shape:
`(batch, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(batch, rows, cols, channels)` if data_format='channels_last'.
# Output shape
4D tensor with shape:
`(batch, filters, new_rows, new_cols)`
if data_format='channels_first'
or 4D tensor with shape:
`(batch, new_rows, new_cols, filters)`
if data_format='channels_last'.
`rows` and `cols` values might have changed due to stride.
# Returns
Output tensor of block.
"""
channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1
pointwise_conv_filters = int(pointwise_conv_filters * alpha)
if strides == (1, 1):
x = inputs
else:
x = layers.ZeroPadding2D(((0, 1), (0, 1)),
name='conv_pad_%d' % block_id)(inputs)
x = layers.DepthwiseConv2D((3, 3),
padding='same' if strides == (1, 1) else 'valid',
depth_multiplier=depth_multiplier,
strides=strides,
use_bias=False,
name='conv_dw_%d' % block_id)(x)
x = layers.BatchNormalization(
axis=channel_axis, name='conv_dw_%d_bn' % block_id)(x)
x = layers.ReLU(6., name='conv_dw_%d_relu' % block_id)(x)
x = layers.Conv2D(pointwise_conv_filters, (1, 1),
padding='same',
use_bias=False,
strides=(1, 1),
name='conv_pw_%d' % block_id)(x)
x = layers.BatchNormalization(axis=channel_axis,
name='conv_pw_%d_bn' % block_id)(x)
return layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x)