Skip to content

Latest commit

 

History

History
32 lines (23 loc) · 1.13 KB

File metadata and controls

32 lines (23 loc) · 1.13 KB

Customer Support on Twitter

This project demonstrates how VulcanSQL can leverage the power of Neon, a serverless PostgreSQL service, to create data applications available to do similarity search!

Prerequisites

Create a table on Neon

You can generate a table using psql or use the SQL editor on Neon.

CREATE TABLE twcs (
    tweet_id SERIAL PRIMARY KEY,
    author_id VARCHAR(50) NOT NULL,
    inbound boolean,
    created_at DATE,
    text TEXT,
    text_embeddings VECTOR(4096),
    response_tweet_id TEXT,
    in_response_to_tweet_id TEXT
);

Insert data

Notes: since we are using the Cohere model in free trial version, so we only chose the first 5000 rows from the dataset

Check gen-embeddings. In short, we first give texts to the Cohere model to get their respective embeddings; then, we use psycopg2 to bulk insert the dataset.