-
Notifications
You must be signed in to change notification settings - Fork 1
/
object_detection.py
105 lines (84 loc) · 3.93 KB
/
object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# import the necessary packages
from imutils.video import VideoStream
import numpy as np
from mail import sendEmail
from facerecognition import recognize_faces
import imutils
import cv2
import threading
import settings
def detect_object():
# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
#Set holds only what we want to detect
DETECT = set(["person"])
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe("MobileNetSSD_deploy.prototxt.txt", "MobileNetSSD_deploy.caffemodel")
# initialize the video stream
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
#Flag to break loop
flag = True
# loop over the frames from the video stream
while ((flag is True) and (settings.lock is False) and (settings.active is True)):
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 800 pixels
frame = vs.read()
frame = imutils.resize(frame, width=800)
# grab the frame dimensions and convert it to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
0.007843, (300, 300), 127.5)
# pass the blob through the network and obtain the detections and
# predictions
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > 0.69:
# extract the index of the class label from the
# `detections`, then compute the (x, y)-coordinates of
# the bounding box for the object
idx = int(detections[0, 0, i, 1])
if CLASSES[idx] not in DETECT:
continue
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the prediction on the frame
label = "{}: {:.2f}%".format(CLASSES[idx],
confidence * 100)
cv2.rectangle(frame, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(frame, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
# show the output frame
#cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
cv2.imwrite('/home/pi/Desktop/CameraSoftware/WhoDat.jpg',frame)
#cv2.imwrite('/Users/nick/Desktop/cameraRepo/CameraSoftware/WhoDat.jpg',frame)
print("Recognizing Faces...")
people = list()
people = recognize_faces()
print("Sending email...")
threading.Thread(target=sendEmail, args=[people]).start()
print("done!")
vs.stop()
#breaks from whil loop
flag = False
# do a bit of cleanup
cv2.destroyAllWindows()
break
#Release camera
vs.stream.release()