-
Notifications
You must be signed in to change notification settings - Fork 4
/
main.py
629 lines (548 loc) · 23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
import warnings
warnings.filterwarnings("ignore")
import argparse, os, sys, datetime, glob, importlib
from omegaconf import OmegaConf
import numpy as np
from PIL import Image
import torch
import torchvision
from torch.utils.data import random_split, DataLoader, Dataset
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
from pytorch_lightning.utilities.distributed import rank_zero_only
from pytorch_lightning.loggers import TensorBoardLogger
from ldm.data.utils import custom_collate
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-n",
"--name",
type=str,
const=True,
default="",
nargs="?",
help="postfix for logdir",
)
parser.add_argument(
"-r",
"--resume",
type=str,
const=True,
default="",
nargs="?",
help="resume from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-t",
"--train",
type=str2bool,
const=True,
default=False,
nargs="?",
help="train",
)
parser.add_argument(
"--no-test",
type=str2bool,
const=True,
default=False,
nargs="?",
help="disable test",
)
parser.add_argument("-p", "--project", help="name of new or path to existing project")
parser.add_argument(
"-d",
"--debug",
type=str2bool,
nargs="?",
const=True,
default=False,
help="enable post-mortem debugging",
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=2023,
help="seed for seed_everything",
)
parser.add_argument(
"-f",
"--postfix",
type=str,
default="",
help="post-postfix for default name",
)
parser.add_argument(
"--basedir",
type=str,
default="checkpoints",
help="the base directory",
)
parser.add_argument(
"--test_first",
type=str2bool,
nargs="?",
const=True,
default=False,
help="test before training",
)
return parser
def nondefault_trainer_args(opt):
parser = argparse.ArgumentParser()
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args([])
return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k))
def instantiate_from_config(config):
if not "target" in config:
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
class WrappedDataset(Dataset):
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
def __init__(self, dataset):
self.data = dataset
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class DataModuleFromConfig(pl.LightningDataModule):
def __init__(self, batch_size, val_scale=6, train=None, validation=None, test=None,
wrap=False, num_workers=None):
super().__init__()
self.batch_size = batch_size
self.val_scale = val_scale
self.dataset_configs = dict()
self.num_workers = num_workers if num_workers is not None else batch_size*2
if train is not None:
self.dataset_configs["train"] = train
self.train_dataloader = self._train_dataloader
if validation is not None:
self.dataset_configs["validation"] = validation
self.val_dataloader = self._val_dataloader
if test is not None:
self.dataset_configs["test"] = test
self.test_dataloader = self._test_dataloader
self.wrap = wrap
def prepare_data(self):
for data_cfg in self.dataset_configs.values():
instantiate_from_config(data_cfg)
def setup(self, stage=None):
self.datasets = dict(
(k, instantiate_from_config(self.dataset_configs[k]))
for k in self.dataset_configs)
if self.wrap:
for k in self.datasets:
self.datasets[k] = WrappedDataset(self.datasets[k])
def _train_dataloader(self):
return DataLoader(self.datasets["train"], batch_size=self.batch_size,
num_workers=self.num_workers, shuffle=True, collate_fn=custom_collate,
pin_memory=False, drop_last=False)
def _val_dataloader(self):
return DataLoader(self.datasets["validation"],
batch_size=self.batch_size * self.val_scale,
num_workers=self.num_workers, collate_fn=custom_collate,
pin_memory=False, drop_last=False)
def _test_dataloader(self):
return DataLoader(self.datasets["test"], batch_size=self.batch_size * self.val_scale,
num_workers=self.num_workers, collate_fn=custom_collate,
pin_memory=False, drop_last=False)
class SetupCallback(Callback):
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config):
super().__init__()
self.resume = resume
self.now = now
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
self.lightning_config = lightning_config
def on_pretrain_routine_start(self, trainer, pl_module):
if not getattr(trainer, 'get_ready', False):
setattr(trainer, 'get_ready', True)
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
print("Save project config")
OmegaConf.save(self.config,
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)))
print("Save lightning config")
OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}),
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)))
OmegaConf.save(OmegaConf.merge(self.config, OmegaConf.create({"lightning": self.lightning_config})),
os.path.join(self.cfgdir, "{}-all.yaml".format(self.now)))
else:
# ModelCheckpoint callback created log directory --- remove it
if not self.resume and os.path.exists(self.logdir):
dst, name = os.path.split(self.logdir)
dst = os.path.join(dst, "child_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
try:
os.rename(self.logdir, dst)
except FileNotFoundError:
pass
class DummyImageLogger(Callback):
def __init__(self, *args, **kwargs):
super().__init__()
def check_frequency(self, epoch_idx, batch_idx):
return False
class ImageLoggerBase(Callback):
def __init__(self, batch_frequency, frequency_base=2, nrow=8, max_images=8, clamp=True, increase_log_steps=True):
super().__init__()
self.batch_freq = batch_frequency
self.max_images = max_images
self.nrow = nrow
self.logger_log_images = {
pl.loggers.tensorboard.TensorBoardLogger: self._tensorboard,
pl.loggers.WandbLogger: self._wandb,
}
self.log_steps = [frequency_base ** n for n in range(int(np.log(self.batch_freq) / np.log(frequency_base)) + 1)]
if not increase_log_steps:
self.log_steps = [self.batch_freq]
self.clamp = clamp
@rank_zero_only
def _tensorboard(self, pl_module, images, split, batch_idx=None):
for k in images:
grid = torchvision.utils.make_grid(images[k], nrow=self.nrow)
grid = (grid + 1.0) / 2.0
label = f'{split}/{k}' if batch_idx is None else f'{split}/{k}_{batch_idx}'
pl_module.logger.experiment.add_image(label, grid.detach().cpu(), pl_module.global_step)
@rank_zero_only
def _wandb(self, pl_module, images, batch_idx, split):
raise ValueError("No way wandb")
grids = dict()
for k in images:
grid = torchvision.utils.make_grid(images[k])
grids[f"{split}/{k}"] = wandb.Image(grid)
pl_module.logger.experiment.log(grids)
@rank_zero_only
def _testtube(self, pl_module, images, batch_idx, split):
for k in images:
grid = torchvision.utils.make_grid(images[k])
grid = (grid+1.0)/2.0 # -1,1 -> 0,1; c,h,w
tag = f"{split}/{k}"
pl_module.logger.experiment.add_image(
tag, grid,
global_step=pl_module.global_step)
@rank_zero_only
def log_local(self, save_dir, split, images,
global_step, current_epoch, batch_idx):
root = os.path.join(save_dir, "images", split)
for k in images:
grid = torchvision.utils.make_grid(images[k], nrow=self.nrow)
grid = grid.transpose(0,1).transpose(1,2).squeeze(-1)
grid = grid.numpy().astype(np.uint8)
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
k,
global_step,
current_epoch,
batch_idx)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
Image.fromarray(grid).save(path)
def log_img(self, pl_module, batch, batch_idx, split="train"):
pass
@rank_zero_only
def log_histogram(self, pl_module, histogram, batch_idx, split, factor_name):
pl_module.logger.experiment.add_histogram(f'{split}/{factor_name}', histogram.detach().cpu(), pl_module.global_step)
def check_frequency(self, iter_idx):
if (iter_idx % self.batch_freq) == 0 or iter_idx in self.log_steps:
try:
self.log_steps.pop(0)
except IndexError:
pass
return True
return False
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
if batch_idx % trainer.accumulate_grad_batches == 0:
self.log_img(pl_module, batch, trainer.global_step, split="train")
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
self.log_img(pl_module, batch, batch_idx, split="val")
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
self.log_img(pl_module, batch, batch_idx, split="test")
class ImageLogger(ImageLoggerBase):
def log_img(self, pl_module, batch, batch_idx, split="train"):
if not hasattr(pl_module, 'log_images') or not callable(pl_module.log_images) or self.max_images <= 0:
return
if self.check_log(split, pl_module.global_step, batch_idx):
logger = type(pl_module.logger)
is_train = pl_module.training
if is_train:
pl_module.eval()
images = pl_module.log_images(batch)
for k in images:
if len(images[k]) < self.nrow:
N = len(images[k])
else:
N = self.nrow * (len(images[k]) // self.nrow)
images[k] = images[k][:N]
if isinstance(images[k], torch.Tensor):
images[k] = images[k].detach().cpu()
# if self.clamp:
# images[k] = torch.clamp(images[k], -1., 1.)
elif isinstance(images[k], list):
images[k] = torch.stack(images[k], dim=0)
self.log_local(pl_module.logger.save_dir, split, images,
pl_module.global_step, pl_module.current_epoch, batch_idx)
logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None)
for k in images:
images[k] /= 255.
images[k] = images[k] * 2. - 1.
logger_log_images(pl_module, images, split, batch_idx if split.startswith('val') else None)
if is_train:
pl_module.train()
def check_log(self, split, global_step, batch_idx):
return (split == 'train' and self.check_frequency(global_step)) or (split == 'val' and batch_idx == 0)
if __name__ == "__main__":
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# add cwd for convenience and to make classes in this file available when
# running as `python main.py`
# (in particular `main.DataModuleFromConfig`)
sys.path.append(os.getcwd())
parser = get_parser()
parser = Trainer.add_argparse_args(parser)
opt, unknown = parser.parse_known_args()
if opt.name and opt.resume:
raise ValueError(
"-n/--name and -r/--resume cannot be specified both."
"If you want to resume training in a new log folder, "
"use -n/--name in combination with --resume_from_checkpoint"
)
if opt.resume:
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split("/")
idx = -2
logdir = "/".join(paths[:idx])
ckpt = opt.resume
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume
ckpt = os.path.join(logdir, "models", "last.ckpt")
opt.resume_from_checkpoint = ckpt
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
opt.base = base_configs + opt.base
_tmp = logdir.split("/")
nowname = _tmp[-1]
else:
if opt.name:
name = "_" + opt.name
elif opt.base:
cfg_fname = os.path.split(opt.base[0])[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
name = "_" + cfg_name
else:
name = ""
nowname = now + name + opt.postfix
logdir = os.path.join(opt.basedir, nowname)
ckptdir = os.path.join(logdir, "models")
cfgdir = os.path.join(logdir, "configs")
tensorboard_dir = os.path.join(logdir, 'tensorboard')
os.makedirs(ckptdir, exist_ok=True)
os.makedirs(cfgdir, exist_ok=True)
os.makedirs(tensorboard_dir, exist_ok=True)
seed_everything(opt.seed)
try:
# init and save configs
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
lightning_config = config.pop("lightning", OmegaConf.create())
# merge trainer cli with config
trainer_config = lightning_config.get("trainer", OmegaConf.create())
# default to ddp
trainer_config["distributed_backend"] = "ddp"
for k in nondefault_trainer_args(opt):
trainer_config[k] = getattr(opt, k)
if not "gpus" in trainer_config:
del trainer_config["distributed_backend"]
cpu = True
else:
gpuinfo = trainer_config["gpus"]
print(f"Running on GPUs {gpuinfo}")
cpu = False
trainer_opt = argparse.Namespace(**trainer_config)
lightning_config.trainer = trainer_config
# model
model = instantiate_from_config(config.model)
# trainer and callbacks
trainer_kwargs = dict()
trainer_kwargs['logger'] = \
TensorBoardLogger(save_dir=tensorboard_dir, name='', version='', default_hp_metric=False)
# modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
# specify which metric is used to determine best models
default_modelckpt_cfg = {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": ckptdir,
"filename": "epoch={epoch}_step={step}_loss={train/loss_epoch:.4f}",
"auto_insert_metric_name": False,
"every_n_epochs": 1,
"monitor": "train/loss_epoch",
"save_top_k": 3,
"mode": "min",
"save_last": True,
"verbose": False,
},
}
modelckpt_cfg = lightning_config.get('modelcheckpoint', OmegaConf.create())
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
default_modelckpt_epoch_cfg = {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": ckptdir,
"filename": "{epoch:03d}_{step}",
"save_top_k": -1,
"every_n_epochs": 25,
"every_n_train_steps": None,
"save_last": False,
"verbose": False,
"save_on_train_epoch_end": True,
},
}
modelckpt_epoch_cfg = lightning_config.get('modelcheckpoint_epoch', OmegaConf.create())
modelckpt_epoch_cfg = OmegaConf.merge(default_modelckpt_epoch_cfg, modelckpt_epoch_cfg)
default_modelckpt_step_cfg = {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": ckptdir,
"filename": "{step}",
"save_top_k": -1,
"every_n_epochs": None,
"every_n_train_steps": None,
"save_last": False,
"verbose": False,
"save_on_train_epoch_end": True,
},
}
modelckpt_step_cfg = lightning_config.get('modelcheckpoint_step', OmegaConf.create())
modelckpt_step_cfg = OmegaConf.merge(default_modelckpt_step_cfg, modelckpt_step_cfg)
# add callback which sets up log directory
default_callbacks_cfg = {
"setup_callback": {
"target": "main.SetupCallback",
"params": {
"resume": opt.resume,
"now": now,
"logdir": logdir,
"ckptdir": ckptdir,
"cfgdir": cfgdir,
"config": config,
"lightning_config": lightning_config,
}
},
"image_logger": {
"target": "main.ImageLogger",
"params": {
"batch_frequency": 1024,
"max_images": 64,
"clamp": True
}
},
"learning_rate_logger": {
"target": "main.LearningRateMonitor",
"params": {
"logging_interval": "step",
#"log_momentum": True
}
},
'checkpoints': modelckpt_cfg,
'checkopints_epoch': modelckpt_epoch_cfg,
'checkopints_step': modelckpt_step_cfg,
}
callbacks_cfg = lightning_config.get('callbacks', OmegaConf.create())
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
# data
data = instantiate_from_config(config.data)
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
# calling these ourselves should not be necessary but it is.
# lightning still takes care of proper multiprocessing though
data.prepare_data()
data.setup()
# configure learning rate
bs = config.data.params.batch_size
if not cpu:
ngpu = len(lightning_config.trainer.gpus.strip(",").split(','))
else:
ngpu = 1
accumulate_grad_batches = lightning_config.trainer.get('accumulate_grad_batches', 1)
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
if 'learning_rate' not in config.model:
base_lr = config.model.base_learning_rate
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
print("Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr))
else:
model.learning_rate = config.model.learning_rate
# allow checkpointing via USR1
def melk(*args, **kwargs):
if trainer.global_rank == 0:
print("Summoning checkpoint.")
ckpt_path = os.path.join(ckptdir, "last.ckpt")
trainer.save_checkpoint(ckpt_path)
print(f"Save last in {ckpt_path}")
def divein(*args, **kwargs):
if trainer.global_rank == 0:
import pudb; pudb.set_trace()
import signal
signal.signal(signal.SIGUSR1, melk)
signal.signal(signal.SIGUSR2, divein)
if opt.test_first and 'test' in data.datasets:
trainer.test(model, data)
# run
if opt.train:
try:
setattr(model, 'data', data)
trainer.fit(model, data)
except Exception:
print('exception!!!!!')
melk()
raise
if not opt.no_test and not trainer.interrupted and 'test' in data.datasets:
trainer.test(model, data)
except Exception:
if opt.debug and trainer.global_rank==0:
try:
import pudb as debugger
except ImportError:
import pdb as debugger
debugger.post_mortem()
raise
finally:
# move newly created debug project to debug_runs
if opt.debug and not opt.resume and trainer.global_rank==0:
dst, name = os.path.split(logdir)
dst = os.path.join(dst, "debug_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
os.rename(logdir, dst)