forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sparsercnn_loss.py
430 lines (353 loc) · 16.7 KB
/
sparsercnn_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/PeizeSun/SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/loss.py
Ths copyright of PeizeSun/SparseR-CNN is as follows:
MIT License [see LICENSE for details]
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from scipy.optimize import linear_sum_assignment
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.metric import accuracy
from ppdet.core.workspace import register
from ppdet.modeling.losses.iou_loss import GIoULoss
__all__ = ["SparseRCNNLoss"]
@register
class SparseRCNNLoss(nn.Layer):
""" This class computes the loss for SparseRCNN.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
__shared__ = ['num_classes']
def __init__(self,
losses,
focal_loss_alpha,
focal_loss_gamma,
num_classes=80,
class_weight=2.,
l1_weight=5.,
giou_weight=2.):
""" Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
weight_dict: dict containing as key the names of the losses and as values their relative weight.
losses: list of all the losses to be applied. See get_loss for list of available losses.
matcher: module able to compute a matching between targets and proposals
"""
super().__init__()
self.num_classes = num_classes
weight_dict = {
"loss_ce": class_weight,
"loss_bbox": l1_weight,
"loss_giou": giou_weight
}
self.weight_dict = weight_dict
self.losses = losses
self.giou_loss = GIoULoss(reduction="sum")
self.focal_loss_alpha = focal_loss_alpha
self.focal_loss_gamma = focal_loss_gamma
self.matcher = HungarianMatcher(focal_loss_alpha, focal_loss_gamma,
class_weight, l1_weight, giou_weight)
def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits']
idx = self._get_src_permutation_idx(indices)
target_classes_o = paddle.concat([
paddle.gather(
t["labels"], J, axis=0) for t, (_, J) in zip(targets, indices)
])
target_classes = paddle.full(
src_logits.shape[:2], self.num_classes, dtype="int32")
for i, ind in enumerate(zip(idx[0], idx[1])):
target_classes[int(ind[0]), int(ind[1])] = target_classes_o[i]
target_classes.stop_gradient = True
src_logits = src_logits.flatten(start_axis=0, stop_axis=1)
# prepare one_hot target.
target_classes = target_classes.flatten(start_axis=0, stop_axis=1)
class_ids = paddle.arange(0, self.num_classes)
labels = (target_classes.unsqueeze(-1) == class_ids).astype("float32")
labels.stop_gradient = True
# comp focal loss.
class_loss = sigmoid_focal_loss(
src_logits,
labels,
alpha=self.focal_loss_alpha,
gamma=self.focal_loss_gamma,
reduction="sum", ) / num_boxes
losses = {'loss_ce': class_loss}
if log:
label_acc = target_classes_o.unsqueeze(-1)
src_idx = [src for (src, _) in indices]
pred_list = []
for i in range(outputs["pred_logits"].shape[0]):
pred_list.append(
paddle.gather(
outputs["pred_logits"][i], src_idx[i], axis=0))
pred = F.sigmoid(paddle.concat(pred_list, axis=0))
acc = accuracy(pred, label_acc.astype("int64"))
losses["acc"] = acc
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
assert 'pred_boxes' in outputs # [batch_size, num_proposals, 4]
src_idx = [src for (src, _) in indices]
src_boxes_list = []
for i in range(outputs["pred_boxes"].shape[0]):
src_boxes_list.append(
paddle.gather(
outputs["pred_boxes"][i], src_idx[i], axis=0))
src_boxes = paddle.concat(src_boxes_list, axis=0)
target_boxes = paddle.concat(
[
paddle.gather(
t['boxes'], I, axis=0)
for t, (_, I) in zip(targets, indices)
],
axis=0)
target_boxes.stop_gradient = True
losses = {}
losses['loss_giou'] = self.giou_loss(src_boxes,
target_boxes) / num_boxes
image_size = paddle.concat([v["img_whwh_tgt"] for v in targets])
src_boxes_ = src_boxes / image_size
target_boxes_ = target_boxes / image_size
loss_bbox = F.l1_loss(src_boxes_, target_boxes_, reduction='sum')
losses['loss_bbox'] = loss_bbox / num_boxes
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = paddle.concat(
[paddle.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = paddle.concat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = paddle.concat(
[paddle.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = paddle.concat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
loss_map = {
'labels': self.loss_labels,
'boxes': self.loss_boxes,
}
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
def forward(self, outputs, targets):
""" This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
outputs_without_aux = {
k: v
for k, v in outputs.items() if k != 'aux_outputs'
}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes across all nodes, for normalization purposes
num_boxes = sum(len(t["labels"]) for t in targets)
num_boxes = paddle.to_tensor(
[num_boxes],
dtype="float32",
place=next(iter(outputs.values())).place)
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(
self.get_loss(loss, outputs, targets, indices, num_boxes))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if 'aux_outputs' in outputs:
for i, aux_outputs in enumerate(outputs['aux_outputs']):
indices = self.matcher(aux_outputs, targets)
for loss in self.losses:
kwargs = {}
if loss == 'labels':
# Logging is enabled only for the last layer
kwargs = {'log': False}
l_dict = self.get_loss(loss, aux_outputs, targets, indices,
num_boxes, **kwargs)
w_dict = {}
for k in l_dict.keys():
if k in self.weight_dict:
w_dict[k + f'_{i}'] = l_dict[k] * self.weight_dict[
k]
else:
w_dict[k + f'_{i}'] = l_dict[k]
losses.update(w_dict)
return losses
class HungarianMatcher(nn.Layer):
"""This class computes an assignment between the targets and the predictions of the network
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
while the others are un-matched (and thus treated as non-objects).
"""
def __init__(self,
focal_loss_alpha,
focal_loss_gamma,
cost_class: float=1,
cost_bbox: float=1,
cost_giou: float=1):
"""Creates the matcher
Params:
cost_class: This is the relative weight of the classification error in the matching cost
cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
"""
super().__init__()
self.cost_class = cost_class
self.cost_bbox = cost_bbox
self.cost_giou = cost_giou
self.focal_loss_alpha = focal_loss_alpha
self.focal_loss_gamma = focal_loss_gamma
assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0"
@paddle.no_grad()
def forward(self, outputs, targets):
""" Performs the matching
Args:
outputs: This is a dict that contains at least these entries:
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
"pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
eg. outputs = {"pred_logits": pred_logits, "pred_boxes": pred_boxes}
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
objects in the target) containing the class labels
"boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
eg. targets = [{"labels":labels, "boxes": boxes}, ...,{"labels":labels, "boxes": boxes}]
Returns:
A list of size batch_size, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
bs, num_queries = outputs["pred_logits"].shape[:2]
if sum(len(v["labels"]) for v in targets) == 0:
return [(paddle.to_tensor(
[], dtype=paddle.int64), paddle.to_tensor(
[], dtype=paddle.int64)) for _ in range(bs)]
# We flatten to compute the cost matrices in a batch
out_prob = F.sigmoid(outputs["pred_logits"].flatten(
start_axis=0, stop_axis=1))
out_bbox = outputs["pred_boxes"].flatten(start_axis=0, stop_axis=1)
# Also concat the target labels and boxes
tgt_ids = paddle.concat([v["labels"] for v in targets])
assert (tgt_ids > -1).all()
tgt_bbox = paddle.concat([v["boxes"] for v in targets])
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
# Compute the classification cost.
alpha = self.focal_loss_alpha
gamma = self.focal_loss_gamma
neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(
1 - out_prob + 1e-8).log())
pos_cost_class = alpha * ((1 - out_prob)
**gamma) * (-(out_prob + 1e-8).log())
cost_class = paddle.gather(
pos_cost_class, tgt_ids, axis=1) - paddle.gather(
neg_cost_class, tgt_ids, axis=1)
# Compute the L1 cost between boxes
image_size_out = paddle.concat(
[v["img_whwh"].unsqueeze(0) for v in targets])
image_size_out = image_size_out.unsqueeze(1).tile(
[1, num_queries, 1]).flatten(
start_axis=0, stop_axis=1)
image_size_tgt = paddle.concat([v["img_whwh_tgt"] for v in targets])
out_bbox_ = out_bbox / image_size_out
tgt_bbox_ = tgt_bbox / image_size_tgt
cost_bbox = F.l1_loss(
out_bbox_.unsqueeze(-2), tgt_bbox_,
reduction='none').sum(-1) # [batch_size * num_queries, num_tgts]
# Compute the giou cost betwen boxes
cost_giou = -get_bboxes_giou(out_bbox, tgt_bbox)
# Final cost matrix
C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
C = C.reshape([bs, num_queries, -1])
sizes = [len(v["boxes"]) for v in targets]
indices = [
linear_sum_assignment(c[i].numpy())
for i, c in enumerate(C.split(sizes, -1))
]
return [(paddle.to_tensor(
i, dtype="int32"), paddle.to_tensor(
j, dtype="int32")) for i, j in indices]
def box_area(boxes):
assert (boxes[:, 2:] >= boxes[:, :2]).all()
wh = boxes[:, 2:] - boxes[:, :2]
return wh[:, 0] * wh[:, 1]
def boxes_iou(boxes1, boxes2):
'''
Compute iou
Args:
boxes1 (paddle.tensor) shape (N, 4)
boxes2 (paddle.tensor) shape (M, 4)
Return:
(paddle.tensor) shape (N, M)
'''
area1 = box_area(boxes1)
area2 = box_area(boxes2)
lt = paddle.maximum(boxes1.unsqueeze(-2)[:, :, :2], boxes2[:, :2])
rb = paddle.minimum(boxes1.unsqueeze(-2)[:, :, 2:], boxes2[:, 2:])
wh = (rb - lt).astype("float32").clip(min=1e-9)
inter = wh[:, :, 0] * wh[:, :, 1]
union = area1.unsqueeze(-1) + area2 - inter + 1e-9
iou = inter / union
return iou, union
def get_bboxes_giou(boxes1, boxes2, eps=1e-9):
"""calculate the ious of boxes1 and boxes2
Args:
boxes1 (Tensor): shape [N, 4]
boxes2 (Tensor): shape [M, 4]
eps (float): epsilon to avoid divide by zero
Return:
ious (Tensor): ious of boxes1 and boxes2, with the shape [N, M]
"""
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
iou, union = boxes_iou(boxes1, boxes2)
lt = paddle.minimum(boxes1.unsqueeze(-2)[:, :, :2], boxes2[:, :2])
rb = paddle.maximum(boxes1.unsqueeze(-2)[:, :, 2:], boxes2[:, 2:])
wh = (rb - lt).astype("float32").clip(min=eps)
enclose_area = wh[:, :, 0] * wh[:, :, 1]
giou = iou - (enclose_area - union) / enclose_area
return giou
def sigmoid_focal_loss(inputs, targets, alpha, gamma, reduction="sum"):
assert reduction in ["sum", "mean"
], f'do not support this {reduction} reduction?'
p = F.sigmoid(inputs)
ce_loss = F.binary_cross_entropy_with_logits(
inputs, targets, reduction="none")
p_t = p * targets + (1 - p) * (1 - targets)
loss = ce_loss * ((1 - p_t)**gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
if reduction == "mean":
loss = loss.mean()
elif reduction == "sum":
loss = loss.sum()
return loss