-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist.arg
50 lines (50 loc) · 3.89 KB
/
mnist.arg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#
#problem parameters
../datasets/mnist.csv #<filename.csv>
-output=1 #[-output=<class columns in csv: <i1,i2,...,in> column ids, <=0 from end>]
# -exclude= #[-exclude=<i1,i2,...,in> column ids to exclude, <=0 from end>]
-label=1 #[-label=<i1,i2,...,in> column ids to force categorical encoding, <=0 from end>]
# -exclude=2,7,9,13,16,17,20,22,23,26,27,28,30,36,42,43,49,52,54,61,73,74,75,80,81,83,85,86,87,92,99,100,103,104,106,111,112,116,119,120,125,135,137,138,143,144,152,155,156,167,169,170,175,187,188,195,197,200,211,215,218,223,224,226,227,237,241,242,256,258,259,260,261,262,272,273,277,279,284,288,290,307,311,314,316,319,321,324,325,327,329,330,333,341,343,349,357,361,364,371,378,382,383,385,387,394,399,400,405,407,410,412,418,419,421,423,425,450,452,454,455,457,458,460,462,465,466,470,473,474,475,477,478,487,488,492,496,501,506,512,516,528,531,533,541,542,543,549,552,555,558,564,569,571,575,577,579,581,584,586,587,589,590,601,603,604,608,610,614,615,616,622,624,627,630,632,634,636,639,640,643,648,651,655,657,660,664,665,670,673,685,687,695,696,709,713,715,718,723,730,731,733,736,742,744,745,751,757,759,760,761,762,765,768,769,770,772,773,774,775,782
#
#NN parameters
-layertypes=1,4,1,9 #[-layertypes=<layertype list 1:Fullrank,2:Sigmoid,3:Softmax,4:ReLu,5:Hermite,
# 6:Lowrank,7:Polynomial,8:SeLU,9:LogSoftmax,10:LogSigmoid,11:GRBF)>]
-layerdim=64 #[-layerdim=<layer dimensions>]
-leak=0.001 #[-leak=<ReLU leak>]
-hdegree=5 #[-hdegree=<Hermite degree>]
-lrank=1 #[-lrank=<Rank for Lowrank layers>]
-pdegree=3 #[-pdegree=<Polynomial degree>]
-prank=0 #[-prank=<list of rank for Polynomial layers>]
#
#Training Parameters
-ncycles=1000 #[-ncycles=<Max NN training cycles>]
-batch=16 #[-batch=<training batch>]
-error=0. #[-error=<stopping error>]
-validate=-10000 #[-validate=<validation %, <0 -n records from end]
-loss=5 #[-loss=<loss function (0:MSE, 1:MAE, 2:CE, 3:BCE, 4:BCEL, 5:CEL, 6:MSEL)>]
-encode=2 #[-encode=<encoding (0: Binary, 1: Label, 2:One hot>]
-scale=1 #[-scale=<initial scaling (0:No Scaling, 1:MinMax, 2:Zscore)>]
#
#Optimizer parameters
-optimizer=3 #[-optimizer=<optimizer (0:GD, 1:Momentum, 2:RMSP, 3:Adam)>]
-alpha=0.001 #[-alpha=<learning rate>]
-beta1=0.9 #[-beta1=<optimizer parameter>]
-beta2=0.999 #[-beta2=<optimizer parameter>]
#
#FS parameters
-epsilon=1.0 #[-epsilon=<BSA epsilon>]
-mixrate=0.8 #[-mixrate=<BSA mixrate>]
-pso_c1=1 #[-pso_c1=<PSO c1 param>]
-pso_c2=1 #[-pso_c2=<PSO c2 param>]
-pso_c3=1 #[-pso_c3=<PSO c3 param>]
-pso_c4=1 #[-pso_c4=<PSO c4 param>]
-pso_k=0 #[-pso_k=<PSO k-tournament %>]
-ga=1 #[-ga=<genetic algorithm 0:BSAO, 1: SBMBSA, 2:SBPSO, 3:BiPSO, 4:BiMBSA>]
-nepoch=50 #[-nepoch=<BSA number of epochs>]
-natoms=0 #[-natoms=<BSA population size>]
#
#General parameteres
-seed=0 #[-seed=<seed for RNG>]
-check=0 #[-check=<gradient threshold>]
-nthreads=16 #[-nthreads=<nthreads>]
-timeout=10000 #[-timeout=<timeout(s)>]