
libSplash
User Manual

Last update: August 21, 2015

TU Dresden
Center for Information Services and
High Performance Computing (ZIH)
01062 Dresden
Germany

http://www.tu-dresden.de/zih

Helmholtz Zentrum Dresden Rossendorf
Bautzner Landstrasse 400
01328 Dresden
Germany

http://www.hzdr.de

http://www.tu-dresden.de/zih
http://www.hzdr.de

Contents

1 Introduction 4
1.1 About libSplash . 4
1.2 About this Manual . 4
1.3 Installation . 5

1.3.1 Requirements and Compiling 5
1.4 Usage . 5

1.4.1 Linking to your Project . 5
1.4.2 Includes . 5
1.4.3 Getting Started . 5

2 SerialDataCollector 6
2.1 Files . 6

2.1.1 File Structure . 6
2.1.2 Opening Files . 7
2.1.3 Closing Files . 7

2.2 Datasets . 7
2.2.1 Writing . 7
2.2.2 Reading . 8
2.2.3 Appending . 8
2.2.4 Removing . 8

2.3 Attributes . 8
2.3.1 Writing . 8
2.3.2 Reading . 8
2.3.3 Global Attributes . 8

2.4 References . 9

3 DomainCollector 10
3.1 Writing Domains . 11
3.2 Reading Domains . 11
3.3 Appending Domains . 11

4 ParallelDataCollector 12
4.1 Files . 12

4.1.1 File Structure . 12
4.1.2 Opening Files . 12
4.1.3 Closing Files . 13

4.2 Data Access . 13
4.3 Notes . 13

2

5 ParallelDomainCollector 14

6 Misc 15
6.1 splashtools . 15
6.2 Tests . 15

3

Chapter 1

Introduction

1.1 About libSplash

libSplash is a joined project of the Center for Information Services and HPC
(ZIH) of the Technical University of Dresden and the Helmholtz-Zentrum Dresden-
Rossendorf (HZDR). The project aims at developing a HDF5-based I/O library
for HPC simulations. It is created as an easy-to-use frontend for the standard
HDF5 library with support for MPI processes in a cluster environment. While
the standard HDF5 library provides detailed low-level control, libSplash simpli-
fies tasks commonly found in large-scale HPC simulations, such as iterative
computations and MPI distributed processes.

1.2 About this Manual

This manual describes the general ideas and usage modes of libSplash and
its most important classes. For a detailed explanation of all available classes,
interfaces and methods, please refer to the Doxygen HTML documentation.
(Note: This manual may not be updated regularly!)

4

1.3 Installation

1.3.1 Requirements and Compiling

Please see the file INSTALL.md for details.

1.4 Usage

1.4.1 Linking to your Project

We provide a FindSplash.cmake module that can be used in your codes
CMakeLists.txt file. Install instructions and further hints for non-cmake based linking
can be found in the file INSTALL.md .

1.4.2 Includes
To use libSplash in your application, the only include file necessary is
splash/splash.h . This include will make the following defines available in your
code:

• SPLASH SUPPORTED SERIAL 1 output to serial (posix) files per rank.

• SPLASH SUPPORTED PARALLEL 1 output to parallel HDF5 files (optional, can
be undefined)

• SPLASH VERSION MAJOR, ... MINOR, ... PATCH the libraries version number.

• SPLASH FILE FORMAT MAJOR, ... MINOR the libSplash file format that will be
created by this version of libSplash.

Note: the file format created by libSplash does not have to correspond to the libraries
release version.

The following convention applies: if a files major file format does not differ from the
file format version of the install, libSplash will be able to read and write it. Changes in
the minor version of the file format are backwards compatible.

1.4.3 Getting Started
libSplash consists of two parts: the basic DataCollector interface and the extended
DomainCollector interface.

DataCollector is the basic interface for most operations, such as accessing files
as well as reading and writing Datasets and Attributes. This interface is implemented in
the SerialDataCollector and ParallelDataCollector classes.

DomainCollector extends this interface with operations on Domains which can
represent the simulation area, a logical data field or a similar logical program structure.
This is helpful to allow easy post-mortem access to the stored data from an analysis or
visualization tool.

You can enable printing of verbose status messages by setting the environment
variable SPLASH VERBOSE to the required verbosity level.

5

Chapter 2

SerialDataCollector

2.1 Files
libSplash stores data in HDF5 files with the extension .h5. The filename structure is
(common name) (mpi position).h5. common name is the name chosen by the user for
the libSplash files, e.g. ’simulation data’. mpi position is the three-dimensional position
of the MPI process creating this file, starting at (0, 0, 0). This format is chosen even if
no MPI environment is used to create the files.

Example:

• If libSplash is used from a non-parallel program using one process, only the file
simulation data 0 0 0.h5 is created.

• If libSplash is used by a MPI parallel program with 2x2 processes, the files simula-
tion data 0 0 0.h5, simulation data 1 0 0.h5, simulation data 0 1 0.h5 and sim-
ulation data 1 1 0.h5 are created.

2.1.1 File Structure
Each libSplash file uses a similar internal file structure which is composed from groups
(folders), datasets, attributes and references. A dataset in a libSplash HDF5 file is stored
in the data group (see below) under its corresponding iteration, e.g. /data/100/my dataset.
We refer to iterations (of algorithms and/or simulations) instead of time steps since for
some algorithms time steps can change (or are not defined in the first place). Groups
can be organized in hierarchies.

• header This group stores general information about this file and the creation con-
text (e.g. the number of MPI processes participating in creating all related files).

• data This group stores the actual (simulation) data and their annotated attributes.
Indexed sub-groups are used to reflect an iterative program pattern. In the follow-
ing example, every 10th iteration is stored using libSplash.

– 0 Iteration 0

∗ dataset A
∗ group 1/dataset B

– 10 Iteration 10

∗ dataset A
∗ group 1/dataset B

• common [deprecated]

6

2.1.2 Opening Files
Before data can be stored or read, files must be opened by calling DataCollector::open.
This method requires the common part of the filename and an object of type
FileCreationAttr. This object defines the file access type as well as the number
of participating MPI processes, the MPI position of the calling process and further infor-
mation. The following file access types are available:

• FAT CREATE A new file is created. Any existing file with this name if overwritten.
FileCreationAttr is used to determine the MPI position part of the filename.

• FAT WRITE An existing file is opened for reading and writing. FileCreationAttr
is used to determine the MPI position part of the filename. If the file does not ex-
ist, it is created. Otherwise, any write access to existing datasets will overwrite
them.

• FAT READ An existing file is opened in read-only mode. FileCreationAttr is
used to determine the MPI position part of the filename. If the file does not exist,
an exception is thrown.

• FAT READ MERGED All existing files belonging to a single multi-process run are
opened simultaneously in read-only mode. Data from all files can be read trans-
parently as if written to a single file.

2.1.3 Closing Files
After all file operations are finished and before opening or creating a new file, already
opened files must be closed by a call to DataCollector::close. Otherwise, file
information can be inconsistent and required data may not be stored properly.

2.2 Datasets
Datasets are the general way for storing user data, e.g. simulation results or interme-
diate systems states. They can be one-, two- or three-dimensional and each element
can be a basic type (e.g. int) or structured type (i.e. a struct). Subclasses of the
abstract class CollectionType are used to define the Datatype of a Dataset when
storing data (or attributes to data). The range of available types can be easily extended
by defining a new subclass (see include/splash/basetypes for a list of existing
types).

Datasets are stored in the data group of libSplash files and must be related to a
specific index beneath this group.

2.2.1 Writing
To write data, use any of the DataCollector::write methods. They require the
used datatype, the number of dimensions (ndims, 1-3), the size of the actual data,
buffers, strides and offsets in each dimension as a Selection object, the name for the
dataset and a pointer holding the data. Any existing dataset in this group with the same
is name is overwritten.

Please note that the user is responsible to pass a correct CollectionType to
any write call. Otherwise, user data may be interpreted incorrectly. Besides the pre-
defined data types, new types can be created by inheriting from the CollectionType
interface or using the macros for array- and compound-types, TYPE ARRAY() and
TYPE COMPOUND().

7

2.2.2 Reading
To read data, use any of the DataCollector::read methods. They work similar to
DataCollector::write but do not require a CollectionType or rank, as these
information are implicitly given from the read dataset. The destination buffer for reading
must be allocated by the user. However, read methods can be passed a NULL pointer
to not read any data but only return the required dimensions of the destination buffer.

2.2.3 Appending
Appending data is possible only for one-dimensional datasets. It is achieved using
any of the DataCollector::append methods. In contrast to writing a dataset, any
existing data remains unchanged and new elements are appended at the end. If the
dataset for appending does not exist, it is created.

2.2.4 Removing
Datasets as well as whole program iterations can be removed from a file using
DataCollector::remove. However, it may depend on the linked HDF5 library if file
size actually decreases.

2.3 Attributes
Attributes are annotations to Datasets which can be used to store meta information.
Attributes can be of any CollectionType but must only contain a single element of
that type (in contrast to Datasets, which are multi-dimensional arrays). At the moment,
it is not possible to annotate Attributes at groups.

2.3.1 Writing
Attributes are written using the DataCollector::writeAttribute method. It must
be passed the location of the annotated Dataset (id and name) and the type and name
of the Attribute.

2.3.2 Reading
To read an Attribute, use the DataCollector::readAttribute method. It must
be passed the location of the annotated Dataset (id and name) and the name of the
Attribute. If no Attribute with this name and location exists, an exception is thrown.

If the file has been opened for transparent merged read using FAT READ MERGED,
additionally a MPI position can be defined to specify from which subfile to read the
required Attribute. If this MPI position is set to NULL, the Attribute is read from the file
with MPI position (0, 0, 0).

2.3.3 Global Attributes
Global Attributes are not specific to a single Dataset but belong to the whole file or to
each subfile, respectively. To write and read Global Attributes, use
DataCollector::writeGlobalAttribute and
DataCollector::readGlobalAttribute methods. Reading and writing is similar
to normal Attributes, including the optional MPI position when reading Global Attributes
in FAT READ MERGED mode.

8

2.4 References
References are links to another Dataset within one HDF5 file. It can reference the whole
Dataset as well as a user-defined subset, specified by offset, count and stride. After a
reference is created using DataCollector::createReference, it can be accessed
like a normal Dataset.

9

Chapter 3

DomainCollector

DomainCollector extends SerialDataCollector with domain management fea-
tures. A domain is a logical view to data in memory in or files, in contrast to the
physical/memory view. DomainCollector allows to efficiently read subdomains (sub-
partitions) from multi-process HDF5 files with entries annotated with domain informa-
tion.

The following concept is used: Each process (of the MPI topology) annotates its
local data with local and global domain information when writing. When reading from
these files, data from all files can be accessed transparently as if in one single file. This
global view uses the global domain information, created from all local subdomains.

Figure 3.1: Multi-process domain- and file-view when using DomainCollector
class.

Domain data can be of two types:

• GridType This type is used for data stored as 1-3-dimensional arrays, such as
fields or volumes where each element has a specified position within the domain
grid.

• PolyType This type is used for unordered 1-dimensional data, e.g. particles
within a volume.

10

3.1 Writing Domains
To write Domain data, use any of the DomainCollector::writeDomain calls. Each
requires information on the source data and buffer to read from, a name for the Dataset,
the Datatype as well as Domain information: the stored domain offset and area and the
type of data stored (GridType or PolyType). Domain information is annotated as HDF5
attributes to the dataset.

3.2 Reading Domains
To read Domain data, use DomainCollector::readDomain. It must be passed the
name and area of the requested Domain partition (sub-Domain). The Domain type and
a DataContainer holding the read data are returned.

When reading Domain data, read calls to multiple HDF5 Datasets may be nec-
essary if the requested sub-Domain spans multiple Datasets. Therefor, the returned
DataContainer holds multiple DomainData objects. Each DomainData object stores
a part of the requested data along with sub-Domain-specific information. If GridType
data is read, only a single DomainData object may be returned as data from multiple
Datasets can be transparently combined into one new array. Otherwise, when reading
PolyType data, the DataContainer is likely to hold multiple DomainData objects, one for
each physical read. These DomainData object can be queried successively or by their
1-3-dimensional index (DataContainer::get and DataContainer::getIndex).
Additionally, all elements from all DomainData objects within one DataContainer can be
queried continuously using getNumElements as well as getElement.

3.3 Appending Domains
Appending Domain data follows the same restrictions as appending normal Datasets
(see 2.2.1).

11

Chapter 4

ParallelDataCollector

To enable parallel support in libSplash, an HDF5 installation built with --enable-parallel
must be available.

4.1 Files
ParallelDataCollector stores data in HDF5 files with the extension .h5. Since only a
single (parallel) file is created by all participating MPI processes, the filename structure
is (common name) (iteration).h5. common name is the name chosen by the user for the
libSplash files, e.g. ’simulation data’. iteration is the iteration id, e.g. 0, 100, 512. One
file is created for each iteration for the sake of resilience.

Example:

• If libSplash is used to write two iterations 0 and 100, the files simulation data 0.h5
and simulation data 100.h5, are created.

4.1.1 File Structure
Parallel libSplash files use the same internal structure as serial files (with the exception
that each file contains only a single iteration but the data from all processes).

4.1.2 Opening Files
Before data can be stored or read, files must be opened by calling
ParallelDataCollector::open. This method requires the common part of the file-
name and an object of type FileCreationAttr. Calls to this function are collective.
The following file access types are available:

• FAT CREATE A new file is created. Any existing file with this name if overwritten.
FileCreationAttr is ignored.

• FAT WRITE An existing file is opened for reading and writing. FileCreationAttr
is ignored. If the file does not exist, it is created. Otherwise, any write access to
existing datasets will overwrite them.

• FAT READ An existing file is opened in read-only mode. FileCreationAttr is
ignored. If the file does not exist, an exception is thrown.

• FAT READ MERGED Equivalent to FAT READ.

12

4.1.3 Closing Files
After all file operations are finished and before opening or creating a new file, already
opened files must be closed by a call to ParallelDataCollector::close. Other-
wise, file information can be inconsistent and required data may not be stored properly.
Calls to this function are collective.

4.2 Data Access
Since ParallelDataCollector uses parallel MPI I/O, all accesses to Datasets and At-
tributes (read/write/create/...) must be called collectively by all processes in the MPI
communicator passed to ParallelDataCollector. The only exception are append calls
which are not collective but must be preceded by a collective reserve call.

4.3 Notes
When using parallel libSplash, the functions getMaxID and getEntryIDs internally
list the files in the directory of the HDF5 filename given at open to obtain the list of
available iterations for this file set. Therefore, old files in the same directory with the
same common filename part will be recognized as belonging to the current file set, too.

13

Chapter 5

ParallelDomainCollector

ParallelDomainCollector extends ParallelDataCollector with domain man-
agement features, similarly to DomainCollector. However, only a single, parallel
multi-process file is created which includes data from all MPI processes.

The following concept is used: Each process (of the MPI topology) annotates its
local data with local and global domain information when writing. If global domain infor-
mation is missing, it is derived from the local information of each process (if possible,
see documentation).

Figure 5.1: Multi-process domain- and file-view when using
ParallelDomainCollector class.

14

Chapter 6

Misc

6.1 splashtools
splashtools is a convenience tool to check/modify/... HDF5 files created with libSplash.
Features include:

• List all file entries.

• Transparently delete all iterations in all HDF5 files belonging to a single run.

• Check files for syntactic and semantic consistency.

Run splashtools --help for a complete list of all current features. splashtool sup-
ports both serial and parallel libSplash files.

6.2 Tests
The libSplash repository contains tests for self-testing the library. They can be found in
the tests subdirectory. To build the tests, move to the tests subdirectory and execute
mkdir build; cd build; cmake ..; make.
From the tests directory, all tests can be run using the run tests.sh shell script. To
build the tests, cppunit and OpenMPI must be installed.

15

	Introduction
	About libSplash
	About this Manual
	Installation
	Requirements and Compiling

	Usage
	Linking to your Project
	Includes
	Getting Started

	SerialDataCollector
	Files
	File Structure
	Opening Files
	Closing Files

	Datasets
	Writing
	Reading
	Appending
	Removing

	Attributes
	Writing
	Reading
	Global Attributes

	References

	DomainCollector
	Writing Domains
	Reading Domains
	Appending Domains

	ParallelDataCollector
	Files
	File Structure
	Opening Files
	Closing Files

	Data Access
	Notes

	ParallelDomainCollector
	Misc
	splashtools
	Tests

