Skip to content

DIUx-xView/xView2-deploy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

System setup

xView2 inference requires a tremendous amount of computing power. Currently, CPU inference is wildly impractical. To that end, unless you have a dedicated workstation with ample GPU power such as an Nvidia DGX station, we recommend a cloud based solution such as AWS or Google Cloud Compute utilizing a GPU optimized instance. Prices vary on instance type and area to be inferred. Example instances:

  1. AWS EC2
    1. P4d.24xlarge
    2. P3.16xlarge
  2. G Cloud
    1. Todo!

Installation

Install from source

Note: Only tested on Linux systems.

  1. Close repository: git clone https://github.com/fdny-imt/xView2_FDNY.git.
  2. Create Conda environment: conda create --name xv2 --file spec-file.txt.
  3. Activate conda environment: conda activate xv2.

Docker

Todo.

Usage

Argument Required Default Help
--pre_directory Yes None Directory containing pre-disaster imagery. This is searched recursively.
--post_directory Yes None Directory containing post-disaster imagery. This is searched recursively.
--output_directory Yes None Directory to store output files. This will be created if it does not exist. Existing files may be overwritten.
--n_procs Yes 8 Number of processors for multiprocessing
--batch_size Yes 2 Number of chips to run inference on at once
--num_workers Yes 4 Number of workers loading data into RAM. Recommend 4 * num_gpu
--pre_crs No None The Coordinate Reference System (CRS) for the pre-disaster imagery. This will only be utilized if images lack CRS data.
--post_crs No None The Coordinate Reference System (CRS) for the post-disaster imagery. This will only be utilized if images lack CRS data.
--destination_crs No EPSG:4326 The Coordinate Reference System (CRS) for the output overlays.
--output_resolution No None Override minimum resolution calculator. This should be a lower resolution (higher number) than source imagery for decreased inference time. Must be in units of destinationCRS.
--dp_mode No False Run models serially, but using DataParallel
--save_intermediates No False Store intermediate runfiles
--aoi_file No None Shapefile or GeoJSON file of AOI polygons

Example invocation for damage assessment

On 2 GPUs: CUDA_VISIBLE_DEVICES=0,1 python handler.py --pre_directory <pre dir> --post_directory <post dir> --output_directory <output dir> --aoi_file <aoi file (GeoJSON or shapefile)> --n_procs <n_proc> --batch_size 2 --num_workers 6

Notes:

  • CRS between input types (pre/post/building footprints/AOI) need not match. However CRS within input types must match.

Sources

xView2 1st place solution

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages