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ABSTRACT

Feature extraction is a crucial and difficult issue in pattern
recognition tasks with the high-dimensional and multiple fea-
tures. To extract the latent structure of multiple features with-
out label information, multi-view learning algorithms have
been developed. In this paper, motivated by manifold learn-
ing and multi-view Non-negative Matrix Factorization (NM-
F), we introduce a novel feature extraction method via multi-
view NMF with local graph regularization, where the inner-
view relatedness between data is taken into consideration. We
propose the matrix factorization objective function by con-
structing a nearest neighbor graph to integrate local geomet-
rical information of each view and apply two iterative updat-
ing rules to effectively solve the optimization problem. In
the experiment, we use the extracted feature to cluster several
realistic datasets. The experimental results demonstrate the
effectiveness of our proposed feature extraction approach.

Index Terms— Feature extraction, multi-view learning,
non-negative matrix factorization, graph regularization, clus-
tering.

1. INTRODUCTION

High-dimensional input data is always a problem of comput-
er vision and pattern recognition. An approximate solution
is to project high-dimensional data into a low-dimensional
subspace. Widely used dimensionality reduction techniques
to appropriately represent original data include Principal
Component Analysis (PCA), Singular Value Decomposition
(SVD), Low-Rank Representation (LRR) [1], etc. In [1], low
rank representation was used to recover the space of original
space. It has been shown in [2], [3] that Non-negative Matrix
Factorization (NMF) method provided an efficient represen-
tation of the data. As consequence, NMF has been widely
used as a dimensionality reduction method in pattern recog-
nition [4]-[6] and information retrieval [2], [7] and shown
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to be superior to the most state-of-the-art subspace learning
methods.

In spite of the success of effective single view dimension-
ality reduction technologies, in real world the data can be
represented by different views. For example, the image can
be described as a variety of features (e.g., local features and
global features), news can be reported by different sources or
languages. Different features represent data in different views
with complementary information [6]. Recently, integrating
multi-views has shown to achieve better performance than s-
ingle view [7]-[9]. In [8], A. Kumar et al. exploited global
and local features in face recognition framework. In [9], S.
Kong et al. extended sparse coding framework to study mul-
tiple views jointly. In [7], Akata et al. used co-regularization
for each view, where coefficient matrix of each view was the
same non-negative matrix. It was equivalent to first connect
different views’ features and then apply NMF. However, [6]
thought the assumption was too strong and proposed a com-
mon consensus matrix as soft constraint and learned factors
from different views with soft regularization. The computed
coefficient matrices were equivalent to joint each view’s low
dimensional features, which were approximated to original
data. Most multi-views methods have considered the relat-
edness between different views, but relationship between the
inner-view can also benefit the performance of extracted fea-
tures.

To discover the relationship of data, geometrically mo-
tivated approaches obtained great interest recently. In order
to estimate geometrical properties of the sub-manifold, many
manifold learning methods have been proposed, such as I-
SOMAP [15], Locality Preserving Projection (LPP) [16],
Spectral Regression [5]. [14], [17] have shown that using
the local invariance and geometrical structure would greatly
improve the learning performance.

In this paper, we address the issue of the feature extraction
of high-dimensional data with multi-view features, we pro-
pose a novel graph regularized multi-view NMF algorithm by
taking latent local structure of each inner-view into consider-
ation. Our goal is to generate feature representation in which



similar data is connected nearly in the graph of each view. In
our framework, we take geometrical structure of each view in-
to a new matrix factorization objective function by construct-
ing a nearest neighbor graph and propose two iterative updat-
ing rules to solve the optimization problem.

In the next section, we give a brief review of Multi-view
NMF. In section 3, we introduce our graph regularized Multi-
view NMF algorithm. Then in section 4, we present experi-
ments on our proposed algorithm in data clustering problems.
Finally, conclusion will summarize the contribution of this

paper.

2. A BRIEF REVIEW OF MULTI-VIEW
NON-NEGATIVE MATRIX FACTORIZATION

In this section, we briefly review multi-view matrix factor-
ization algorithm. Some definitions are first provided. Giv-
en a matrix A, we define A, ;, and Ay, as the k-th column
and k-th row of matrix A respectively. A > 0 means that
every entries of matrix A are non-negative. Given data col-
lections with multiple views X, let X/ = [Xfil, s XI_N] €
RMs*N(f € [1, F]) represent the feature matrix in the f-
th view, with a total of F' views. M is the feature dimen-
sion of the f-th view, IV is the number of data. The idea of
Non-negative Matrix Factorization is that if the data are non-
negative, we can find two non-negative matrices to learn a
part-based representation [5]. In Multi-view NMF [6], each
X7 is also decomposed into two non-negative matrices : basis
matrix Uf € RMsr>*K and coefficient matrix VI € RVXEK
whose product provides a good approximation to X7, i.e.
X/ = Uf(VHT, where K is the number of latent concept-
s. In order to make the fusion of different views meaningful,
[6] used ¢; normalization with respect to basis vectors. After
that, coefficient matrices of different views are comparable.
Incorporating this idea, the Multi-view NMF framework is
below:

F
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[6] suggested to normalize factorization U, V with diagonal
matrix Q, UVT =UQ'QV7”, where Q is defined as:
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where Diag(-) denotes a diagonal matrix. After that, the ab-
solute sum of each basis vector is 1, i.e., |Us ;|1 = 1. Ac-
cording to (2), the problem (1) is equivalent to the following

optimization problem:

F

min xf—ufwhHT?
1, KT U0
f=1,..,F 1=

F 3
+ I MIVIQT - V73,
f=1
s.t. U'>0,v/>0, f=1,..,F V*>0.

3. PROPOSED METHOD

Multi-view NMF learns a joint view representation. Howev-
er, it fails to discover the geometrical structure of inner-view
space. In real world, geometrical information of each view
can improve learning performance. In this section, we intro-
duce graph regularization into Multi-view NMF to avoid this
limitation.

3.1. Graph Weight Matrix

In NMF based methods, we aim to find a new data represen-
tation to approximate the original data. It is nature to assume
that if two data are close in latent distribution, the representa-
tions are also close to each other. With the studies of manifold
learning theory [17], a nearest neighbor graph may be the ap-
proximate solution.

Each x; is considered as a vertice, we find its k nearest
neighbors and set edges weight between z; and its neighbors.
While there are many ways to compute the weight matrix W,
we choose 0-1 weight to compute. Particularly, W;; = 1 if
and only if x; is connected with x;. Euclidean distance is
used as the distance metric of original feature of data.

3.2. Graph Regularized Multi-view NMF

With the defined weight matrix W, we can use it to smooth
the coefficient vectors. If two data x; and x; are close in
the latent data distribution, then the low dimensional repre-
sentation V; . and Vj , are also close to each other. We use
the Euclidean distance to measure the distance between basis
vector Vi, and Vj ., D(Vi, Vi) = ||Vix — Vj.«||%. Then we
define the smoothness penalty R/ of each view as below:

N
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where D is a diagonal matrix, D(; ;) = >, W;;, L £ D—W.

According to (4), we fuse local geometric structure of each
view into MultiNMF, the objective function of the proposed



approach can be described as:
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The problem (5) is difficult to be solved, because the loss
function is not convex in both U and V together. As [5] sug-
gested, let ¥; ;, and ®; ;, be the Lagrange multiplier for con-
straint U; , and V;,, > 0. Then, the optimization problem 5
is equivalent to minimize the loss function (6) over U, V, V*
as:
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3.3. Optimization of Minimizing Objective Function

To minimize the function (6), we adopt iterative updating pro-
cedure. Firstly, we keep V* fixed and update U and V. Then,
we minimize the loss function (6) over V* while keeping U
and V fixed.

Fixing V*, update U and V: When V* is given, each views
are independent, for simplicity, U, V and Q represent U7,
v/, Qf . The objective function for each view is as follow:
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The partial derivatives of L with respect to U and V are:
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Using the Karush-Kuhn-Tucker (KKT) conditions ¥; 1 U; 1, =
0 and ®; ;U; 1, = 0, we obtain the following updating rule:
(XV)je + A Sones Var Vil
(UVTV )i+ A ny V2
(XTU F AV XA x uWV)j g
(VUTU + AV + Ap x uDV)j 1

UijZUjJ€ X

9

®

Vik = Vjr X

When computing U7 and V/, we first compute U/ and then
normalize column vectors of U7 and V/ using Q7 as (2) de-
fined:

U« uf(QH v «vIiQl (10)

Fixing U and V, update V*: When U and V' are computed
over each view, we take the derivative of loss function (7) over
V* and get close-form solution to V*:

. Z?:1 )‘foQf
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After several iterations, the loss value can converge. The
proposed method is summarized in Algorithm 1.

v* (11)

Algorithm 1 Our proposed framework

Input: Data feature of each view {X*, X2...., X'}, pa-
rameters {A1, Ag,...,Ap, i, k}.
Output: Basic matrices, coefficient matrices and center
coefficient matrix{ U*, V1, U2, V2., UF, VE, v*},
Initialize: For each view, || X/|; = 1, use NMF to com-
pute initial {U, V and V*}.
repeat
for f=1to ' do
repeat
Fix V* and update V¥, U/ by (9).
Normalize V£, U/ by (10).
until (7) is converged.
end for
Fix V/ and U/ and update V* by (11).
until (5) is converged.

4. EXPERIMENT

In this section, we apply the proposed framework as data rep-
resentation method on clustering problem to demonstrate the
effective performance of our feature extraction algorithm.

4.1. Experiment settings

For comparison, our metrics are the same as [6]. Three public
datasets are used in the experiments. The first is text data 3-
Sources, the last two are image datasets: CMU PIE face data
and UCI handwritten digit data . The information of them are
simply introduced as bellow.

e 3-Sources Text Dataset: Collected from three well-
known online news sources: BBC, Reuters and Guardian
from the period February to April 2009 with totally 948
articles of 416 news. 169 news, which all three sources
reported are testing samples. One of the six topical
(business, entertainment, health, politics, sport and
technology) is the label of the 169 testing samples [18].
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Fig. 1. Example of PIE and UCI Digit Dataset.

e CMU PIE Dataset: It originally contains 41,368
32x32 grayscale images of 68 people under 13 dif-
ferent poses, 43 different illumination condition [19].
We use one pose and randomly choose 42 images
per person with totally 2856 images. In the terms of
features, we use original pixel and HOG feature as
multi-view data. The sample pictures of CMU PIE data
are showed in Fig. 1.

e UCI Handwritten Digit Dataset: As [6] did, we use
low Fourier factors and original pixel features as the d-
ifferent views. The sample images of UCI Handwritten
Digit dataset are showed in Fig. 1. Because the orig-
inal images were lost, we sample the pixel features in
15x 16 pixels.

There are three kind parameters (Ay, p, k) in our frame-
work. We set each Ay = 0.01, o = 10 by cross-validation
and the number of nearest neighbors k£ = 5. For comparison,
the clustering results are evaluated by comparing the predict-
ed labeled with the ground truth. We use two metrics: the ac-
curacy (AC) and the normalized mutual information (NMI).
Please refer to [2] for detail definitions.

We compare many algorithms, including Single View (B-
SV and WSV) [2], ContactNMF [2], CoINMEF [7], Co-reguSC
[8], MultiNMF [6] and SC-ML [21]. While single View al-
gorithm use [2] to converge U, V and V* and V* is used to
compute the best and worst performance refer to BSV and
WSV respectively.

4.2. Results

In our experiments, we run 20 times and obtain the average
and standard deviation performance. The clustering results of

Table 1. The AC of different methods.

. Accuracy(%)
Algorithm 3-Sources PIE Digit
BSV 60.8+.01 | 55.24+.02 | 68.5+.05
WSV 49.14+.03 | 47.6+.01 | 63.44+.04
ConcatNMF || 58.6+.03 | 51.54+.00 | 67.8+.06
CoINMF 61.3£.02 | 56.34+.00 | 66.0+.05
Co-reguSC 47.84.01 | 59.5+.02 | 86.6+.00
MultiNMF 68.4+.06 | 64.84.02 | 88.1£.01
SC-ML 54.0£.00 | 72.34+.00 | 88.1£.00
Our Method || 72.6+.02 | 72.5+.02 | 95.1+.10
Table 2. The NMI of different methods.
Algorithm Normalized Mutual Information(%)
3-Sources PIE Digit

BSV 53.0+.01 | 74.14+.00 | 63.4+.03
WSV 44.1+.02 | 69.14+.02 | 60.3£.03
ConcatNMF || 51.7£.03 | 70.54+.00 | 60.3+.03
CoINMF 55.24.02 | 68.3+.00 | 62.1+.03
Co-reguSC 41.4+.01 | 80.54+.01 | 77.0+.00
MultiNMF 60.2+.06 | 82.24+.02 | 80.4+.01
SC-ML 45.5+.00 | 85.14+.00 | 87.6+.00
Our Method || 67.1+.02 | 90.2+.01 | 90.1+.04

different algorithms on three datasets are showed in Table 1
and Table 2. From the tables, we can see that our proposed
algorithm performs better in each dataset in terms of AC and
NMI. Although other methods consider multiple feature inte-
gration, Co-reguSC and SC-ML use latent data relationship,
the results demonstrate that our proposed Multi-view NMF
with local graph regularization feature extraction framework
can learn a better feature representation.

5. CONCLUSION

This paper proposed a new NMF-based algorithm by merg-
ing local geometrical structure information of each view in
a multi-view feature extraction framework. Our model con-
sidered the inner-view relatedness between data, which can
be approximated by a nearest neighbor graph. Experimental
results demonstrated the effectiveness of our proposed NMF-
based multiview feature extraction algorithms. Different local
geometric structure models may result in different results. In
the future work, we will exploit a new local geometric struc-
ture framework.
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