Image made with Fritzing
Hardware interfaces for the Raspberry Pi 2 and Raspberry Pi 3 are exposed through the 40-pin header J8 on the board. Functionality includes:
- 24x - GPIO pins
- 2x - SPI bus
- 1x - I2C bus
- 2x - 5V power pins
- 2x - 3.3V power pins
- 8x - Ground pins
Let's look at the GPIO available on this device.
The following GPIO pins are accessible through APIs:
GPIO# | Power-on Pull | Alternate Functions | Header Pin |
---|---|---|---|
2 | PullUp | I2C1 SDA | 3 |
3 | PullUp | I2C1 SCL | 5 |
4 | PullUp | 7 | |
5 | PullUp | 29 | |
6 | PullUp | 31 | |
7 | PullUp | SPI0 CS1 | 26 |
8 | PullUp | SPI0 CS0 | 24 |
9 | PullDown | SPI0 MISO | 21 |
10 | PullDown | SPI0 MOSI | 19 |
11 | PullDown | SPI0 SCLK | 23 |
12 | PullDown | 32 | |
13 | PullDown | 33 | |
16 | PullDown | SPI1 CS0 | 36 |
17 | PullDown | 11 | |
18 | PullDown | 12 | |
19 | PullDown | SPI1 MISO | 35 |
20 | PullDown | SPI1 MOSI | 38 |
21 | PullDown | SPI1 SCLK | 40 |
22 | PullDown | 15 | |
23 | PullDown | 16 | |
24 | PullDown | 18 | |
25 | PullDown | 22 | |
26 | PullDown | 37 | |
27 | PullDown | 13 | |
35* | PullUp | Red Power LED | |
47* | PullUp | Green Activity LED |
* = Raspberry Pi 2 ONLY. GPIO 35 & 47 are not available on Raspberry Pi 3.
As an example, the following code opens GPIO 5 as an output and writes a digital '1' out on the pin:
using Windows.Devices.Gpio;
public void GPIO()
{
// Get the default GPIO controller on the system
GpioController gpio = GpioController.GetDefault();
if (gpio == null)
return; // GPIO not available on this system
// Open GPIO 5
using (GpioPin pin = gpio.OpenPin(5))
{
// Latch HIGH value first. This ensures a default value when the pin is set as output
pin.Write(GpioPinValue.High);
// Set the IO direction as output
pin.SetDriveMode(GpioPinDriveMode.Output);
} // Close pin - will revert to its power-on state
}
When you open a pin, it will be in its power-on state, which may include a pull resistor. To disconnect the pull resistors and get a high-impedance input, set the drive mode to GpioPinDriveMode.Input:
```csharp
pin.SetDriveMode(GpioDriveMode.Input);
```
When a pin is closed, it reverts to its power-on state.
Some GPIO pins can perform multiple functions. By default, pins are configured as GPIO inputs. When you open an alternate function by calling I2cDevice.FromIdAsync()
or SpiDevice.FromIdAsync()
, the pins required by the function are automatically switched ("muxed") to the correct function. When the device is closed by calling I2cDevice.Dispose()
or SpiDevice.Dispose()
, the pins revert back to their default function. If you try to use a pin for two different functions at once, an exception will be thrown when you try to open the conflicting function. For example,
var controller = GpioController.GetDefault();
var gpio2 = controller.OpenPin(2); // open GPIO2, shared with I2C1 SDA
var dis = await DeviceInformation.FindAllAsync(I2cDevice.GetDeviceSelector());
var i2cDevice = await I2cDevice.FromIdAsync(dis[0].Id, new I2cConnectionSettings(0x55)); // exception thrown because GPIO2 is open
gpio2.Dispose(); // close GPIO2
var i2cDevice = await I2cDevice.FromIdAsync(dis[0].Id, new I2cConnectionSettings(0x55)); // succeeds because gpio2 is now available
var gpio2 = controller.OpenPin(2); // throws exception because GPIO2 is in use as SDA1
i2cDevice.Dispose(); // release I2C device
var gpio2 = controller.OpenPin(2); // succeeds now that GPIO2 is available
There is one Serial UART available on the RPi2/3: UART0
- Pin 8 - UART0 TX
- Pin 10 - UART0 RX
The example below initializes UART0 and performs a write followed by a read:
using Windows.Storage.Streams;
using Windows.Devices.Enumeration;
using Windows.Devices.SerialCommunication;
public async void Serial()
{
string aqs = SerialDevice.GetDeviceSelector("UART0"); /* Find the selector string for the serial device */
var dis = await DeviceInformation.FindAllAsync(aqs); /* Find the serial device with our selector string */
SerialDevice SerialPort = await SerialDevice.FromIdAsync(dis[0].Id); /* Create an serial device with our selected device */
/* Configure serial settings */
SerialPort.WriteTimeout = TimeSpan.FromMilliseconds(1000);
SerialPort.ReadTimeout = TimeSpan.FromMilliseconds(1000);
SerialPort.BaudRate = 9600;
SerialPort.Parity = SerialParity.None;
SerialPort.StopBits = SerialStopBitCount.One;
SerialPort.DataBits = 8;
/* Write a string out over serial */
string txBuffer = "Hello Serial";
DataWriter dataWriter = new DataWriter();
dataWriter.WriteString(txBuffer);
uint bytesWritten = await SerialPort.OutputStream.WriteAsync(dataWriter.DetachBuffer());
/* Read data in from the serial port */
const uint maxReadLength = 1024;
DataReader dataReader = new DataReader(SerialPort.InputStream);
uint bytesToRead = await dataReader.LoadAsync(maxReadLength);
string rxBuffer = dataReader.ReadString(bytesToRead);
}
Note that you must add the following capability to the Package.appxmanifest file in your UWP project to run Serial UART code:
Visual Studio 2015 has a known bug in the Manifest Designer (the visual editor for appxmanifest files) that affects the serialcommunication capability. If
your appxmanifest adds the serialcommunication capability, modifying your appxmanifest with the designer will corrupt your appxmanifest (the Device xml child
will be lost). You can workaround this problem by hand editting the appxmanifest by right-clicking your appxmanifest and selecting View Code from the
context menu.
<Capabilities>
<DeviceCapability Name="serialcommunication">
<Device Id="any">
<Function Type="name:serialPort" />
</Device>
</DeviceCapability>
</Capabilities>
Let's look at the I2C bus available on this device.
There is one I2C controller I2C1 exposed on the pin header with two lines SDA and SCL. 1.8KΩ internal pull-up resistors are already installed on the board for this bus.
Signal Name | Header Pin Number | Gpio Number |
---|---|---|
SDA | 3 | 2 |
SCL | 5 | 3 |
The example below initializes I2C1 and writes data to an I2C device with address 0x40:
using Windows.Devices.Enumeration;
using Windows.Devices.I2c;
public async void I2C()
{
// 0x40 is the I2C device address
var settings = new I2cConnectionSettings(0x40);
// Create an I2cDevice with the specified I2C settings
var controller = await I2cController.GetDefaultAsync();
using (I2cDevice device = controller.GetDevice(settings))
{
byte[] writeBuf = { 0x01, 0x02, 0x03, 0x04 };
device.Write(writeBuf);
}
}
There are two SPI bus controllers available on the RPi2/3.
Signal Name | Header Pin Number | Gpio Number |
---|---|---|
MOSI | 19 | 10 |
MISO | 21 | 9 |
SCLK | 23 | 11 |
CS0 | 24 | 8 |
CS1 | 26 | 7 |
Signal Name | Header Pin Number | Gpio Number |
---|---|---|
MOSI | 38 | 20 |
MISO | 35 | 19 |
SCLK | 40 | 21 |
CS0 | 36 | 16 |
An example of how to perform a SPI write on bus SPI0 using chip select 0 is shown below:
using Windows.Devices.Enumeration;
using Windows.Devices.Spi;
public async void SPI()
{
// Use chip select line CS0
var settings = new SpiConnectionSettings(0);
// Create an SpiDevice with the specified Spi settings
var controller = await SpiController.GetDefaultAsync();
using (SpiDevice device = controller.GetDevice(settings))
{
byte[] writeBuf = { 0x01, 0x02, 0x03, 0x04 };
device.Write(writeBuf);
}
}
Back to IoT Labs homepage