-
Notifications
You must be signed in to change notification settings - Fork 0
/
locking.c
292 lines (255 loc) · 6.62 KB
/
locking.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2008 Oracle. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/spinlock.h>
#include <linux/page-flags.h>
#include <asm/bug.h>
#include "misc.h"
#include "ctree.h"
#include "extent_io.h"
#include "locking.h"
#include "apfs_trace.h"
/*
* Extent buffer locking
* =====================
*
* We use a rw_semaphore for tree locking, and the semantics are exactly the
* same:
*
* - reader/writer exclusion
* - writer/writer exclusion
* - reader/reader sharing
* - try-lock semantics for readers and writers
*
* The rwsem implementation does opportunistic spinning which reduces number of
* times the locking task needs to sleep.
*/
/*
* __apfs_tree_read_lock - lock extent buffer for read
* @eb: the eb to be locked
* @nest: the nesting level to be used for lockdep
*
* This takes the read lock on the extent buffer, using the specified nesting
* level for lockdep purposes.
*/
void __apfs_tree_read_lock(struct extent_buffer *eb, enum apfs_lock_nesting nest)
{
u64 start_ns = 0;
if (trace_apfs_tree_read_lock_enabled())
start_ns = ktime_get_ns();
down_read_nested(&eb->lock, nest);
eb->lock_owner = current->pid;
trace_apfs_tree_read_lock(eb, start_ns);
}
void apfs_tree_read_lock(struct extent_buffer *eb)
{
__apfs_tree_read_lock(eb, APFS_NESTING_NORMAL);
}
/*
* Try-lock for read.
*
* Return 1 if the rwlock has been taken, 0 otherwise
*/
int apfs_try_tree_read_lock(struct extent_buffer *eb)
{
if (down_read_trylock(&eb->lock)) {
eb->lock_owner = current->pid;
trace_apfs_try_tree_read_lock(eb);
return 1;
}
return 0;
}
/*
* Try-lock for write.
*
* Return 1 if the rwlock has been taken, 0 otherwise
*/
int apfs_try_tree_write_lock(struct extent_buffer *eb)
{
if (down_write_trylock(&eb->lock)) {
eb->lock_owner = current->pid;
trace_apfs_try_tree_write_lock(eb);
return 1;
}
return 0;
}
/*
* Release read lock.
*/
void apfs_tree_read_unlock(struct extent_buffer *eb)
{
trace_apfs_tree_read_unlock(eb);
eb->lock_owner = 0;
up_read(&eb->lock);
}
/*
* __apfs_tree_lock - lock eb for write
* @eb: the eb to lock
* @nest: the nesting to use for the lock
*
* Returns with the eb->lock write locked.
*/
void __apfs_tree_lock(struct extent_buffer *eb, enum apfs_lock_nesting nest)
__acquires(&eb->lock)
{
u64 start_ns = 0;
if (trace_apfs_tree_lock_enabled())
start_ns = ktime_get_ns();
down_write_nested(&eb->lock, nest);
eb->lock_owner = current->pid;
trace_apfs_tree_lock(eb, start_ns);
}
void apfs_tree_lock(struct extent_buffer *eb)
{
__apfs_tree_lock(eb, APFS_NESTING_NORMAL);
}
/*
* Release the write lock.
*/
void apfs_tree_unlock(struct extent_buffer *eb)
{
trace_apfs_tree_unlock(eb);
eb->lock_owner = 0;
up_write(&eb->lock);
}
/*
* This releases any locks held in the path starting at level and going all the
* way up to the root.
*
* apfs_search_slot will keep the lock held on higher nodes in a few corner
* cases, such as COW of the block at slot zero in the node. This ignores
* those rules, and it should only be called when there are no more updates to
* be done higher up in the tree.
*/
void apfs_unlock_up_safe(struct apfs_path *path, int level)
{
int i;
if (path->keep_locks)
return;
for (i = level; i < APFS_MAX_LEVEL; i++) {
if (!path->nodes[i])
continue;
if (!path->locks[i])
continue;
apfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
path->locks[i] = 0;
}
}
/*
* Loop around taking references on and locking the root node of the tree until
* we end up with a lock on the root node.
*
* Return: root extent buffer with write lock held
*/
struct extent_buffer *apfs_lock_root_node(struct apfs_root *root)
{
struct extent_buffer *eb;
while (1) {
eb = apfs_root_node(root);
apfs_tree_lock(eb);
if (eb == root->node)
break;
apfs_tree_unlock(eb);
free_extent_buffer(eb);
}
return eb;
}
/*
* Loop around taking references on and locking the root node of the tree until
* we end up with a lock on the root node.
*
* Return: root extent buffer with read lock held
*/
struct extent_buffer *apfs_read_lock_root_node(struct apfs_root *root)
{
struct extent_buffer *eb;
while (1) {
eb = apfs_root_node(root);
apfs_tree_read_lock(eb);
if (eb == root->node)
break;
apfs_tree_read_unlock(eb);
free_extent_buffer(eb);
}
return eb;
}
/*
* DREW locks
* ==========
*
* DREW stands for double-reader-writer-exclusion lock. It's used in situation
* where you want to provide A-B exclusion but not AA or BB.
*
* Currently implementation gives more priority to reader. If a reader and a
* writer both race to acquire their respective sides of the lock the writer
* would yield its lock as soon as it detects a concurrent reader. Additionally
* if there are pending readers no new writers would be allowed to come in and
* acquire the lock.
*/
int apfs_drew_lock_init(struct apfs_drew_lock *lock)
{
int ret;
ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
if (ret)
return ret;
atomic_set(&lock->readers, 0);
init_waitqueue_head(&lock->pending_readers);
init_waitqueue_head(&lock->pending_writers);
return 0;
}
void apfs_drew_lock_destroy(struct apfs_drew_lock *lock)
{
percpu_counter_destroy(&lock->writers);
}
/* Return true if acquisition is successful, false otherwise */
bool apfs_drew_try_write_lock(struct apfs_drew_lock *lock)
{
if (atomic_read(&lock->readers))
return false;
percpu_counter_inc(&lock->writers);
/* Ensure writers count is updated before we check for pending readers */
smp_mb();
if (atomic_read(&lock->readers)) {
apfs_drew_write_unlock(lock);
return false;
}
return true;
}
void apfs_drew_write_lock(struct apfs_drew_lock *lock)
{
while (true) {
if (apfs_drew_try_write_lock(lock))
return;
wait_event(lock->pending_writers, !atomic_read(&lock->readers));
}
}
void apfs_drew_write_unlock(struct apfs_drew_lock *lock)
{
percpu_counter_dec(&lock->writers);
cond_wake_up(&lock->pending_readers);
}
void apfs_drew_read_lock(struct apfs_drew_lock *lock)
{
atomic_inc(&lock->readers);
/*
* Ensure the pending reader count is perceieved BEFORE this reader
* goes to sleep in case of active writers. This guarantees new writers
* won't be allowed and that the current reader will be woken up when
* the last active writer finishes its jobs.
*/
smp_mb__after_atomic();
wait_event(lock->pending_readers,
percpu_counter_sum(&lock->writers) == 0);
}
void apfs_drew_read_unlock(struct apfs_drew_lock *lock)
{
/*
* atomic_dec_and_test implies a full barrier, so woken up writers
* are guaranteed to see the decrement
*/
if (atomic_dec_and_test(&lock->readers))
wake_up(&lock->pending_writers);
}