-
Notifications
You must be signed in to change notification settings - Fork 24
/
export_onnx.py
75 lines (59 loc) · 2.99 KB
/
export_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import argparse
import torch
import torch.nn as nn
import models
from models.experimental import attempt_load
from utils.activations import Mish
from onnxsim import simplify
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./runs/exp0_yolov4-p7/weights/best.pt', help='weights path') # from yolov5/models/
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)
# Input
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
# Load PyTorch model
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
if isinstance(m, models.common.Conv) and isinstance(m.act, models.common.Mish):
m.act = Mish() # assign activation
if isinstance(m, models.common.BottleneckCSP) or isinstance(m, models.common.BottleneckCSP2) \
or isinstance(m, models.common.SPPCSP):
if isinstance(m.bn, nn.SyncBatchNorm):
bn = nn.BatchNorm2d(m.bn.num_features, eps=m.bn.eps, momentum=m.bn.momentum)
bn.training = False
bn._buffers = m.bn._buffers
bn._non_persistent_buffers_set = set()
m.bn = bn
if isinstance(m.act, models.common.Mish):
m.act = Mish() # assign activation
# if isinstance(m, models.yolo.Detect):
# m.forward = m.forward_export # assign forward (optional)
model.eval()
model.model[-1].export = True # set Detect() layer export=True
# y = model(img) # dry run
# ONNX export
try:
import onnx
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
f = opt.weights.replace('.pt', '.onnx') # filename
#torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
# output_names=['output'])
torch.onnx.export(model, img, f, verbose=False, opset_version=10, input_names=['images'],
output_names=['output'])
# Checks
onnx_model = onnx.load(f) # load onnx model
model_simp, check = simplify(onnx_model)
assert check, "Simplified ONNX model could not be validated"
onnx.save(model_simp, f)
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
print('ONNX export success, saved as %s' % f)
except Exception as e:
print('ONNX export failure: %s' % e)
# Finish
print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')