-
Notifications
You must be signed in to change notification settings - Fork 71
/
train.py
367 lines (289 loc) · 15.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import argparse
import torch.distributed as dist
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.tensorboard import SummaryWriter
import test # import test.py to get mAP after each epoch
from nn import *
from utils.datasets import *
from utils.utils import *
from hyp import hyp
wdir = 'weights'
# Print focal loss if gamma > 0
if hyp['fl_gamma']:
print('Using FocalLoss(gamma=%g)' % hyp['fl_gamma'])
def train(hyp):
assert opt.net in ['mbv3_small_1', 'mbv3_small_75', 'mbv3_large_1', 'mbv3_large_75',
"mbv3_large_75_light", "mbv3_large_1_light", 'mbv3_small_75_light', 'mbv3_small_1_light',
]
epochs = opt.epochs # 500200 batches at bs 64, 117263 images = 273 epochs
batch_size = opt.batch_size
accumulate = max(round(64 / batch_size), 1) # accumulate n times before optimizer update (bs 64)
weights = opt.weights # initial training weights
backbone_weights = opt.backbone_weights # initial training weights
imgsz_min, imgsz_max, imgsz_test = opt.img_size # img sizes (min, max, test)
# Image Sizes
gs = 64 # (pixels) grid size
assert math.fmod(imgsz_min, gs) == 0, '--img-size %g must be a %g-multiple' % (imgsz_min, gs)
opt.multi_scale |= imgsz_min != imgsz_max # multi if different (min, max)
if opt.multi_scale:
if imgsz_min == imgsz_max:
imgsz_min //= 1.5
imgsz_max //= 0.667
grid_min, grid_max = imgsz_min // gs, imgsz_max // gs
imgsz_min, imgsz_max = int(grid_min * gs), int(grid_max * gs)
img_size = imgsz_max # initialize with max size
# Configure run
init_seeds()
train_path = opt.train_path
best = wdir + 'best.pt'
results_file = 'results.txt'
# Remove previous results
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
os.remove(f)
# Initialize model
if opt.net.startswith("mbv3_small_1"):
backone = mobilenetv3_small(backbone_weights)
elif opt.net.startswith("mbv3_small_75"):
backone = mobilenetv3_small(backbone_weights,width_mult = 0.75)
elif opt.net.startswith("mbv3_large_1"):
backone = mobilenetv3_large(backbone_weights)
elif opt.net.startswith("mbv3_large_75"):
backone = mobilenetv3_large(backbone_weights,width_mult = 0.75)
if 'light' in opt.net:
model = DarknetWithShh(backone, hyp, light_head=True).to(device)
else:
model = DarknetWithShh(backone, hyp).to(device)
# Optimizer
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in dict(model.named_parameters()).items():
if '.bias' in k:
pg2 += [v] # biases
elif 'Conv2d.weight' in k:
pg1 += [v] # apply weight_decay
else:
pg0 += [v] # all else
if opt.adam:
hyp['lr0'] *= 0.1 # reduce lr (i.e. SGD=5E-3, Adam=5E-4)
optimizer = optim.Adam(pg0, lr=hyp['lr0'])
# optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
print('Optimizer groups: %g .bias, %g Conv2d.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
del pg0, pg1, pg2
start_epoch = 0
best_fitness = 0.0
if weights.endswith('.pt'): # pytorch format
chkpt = torch.load(weights, map_location=device)
# load model
try:
chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
model.load_state_dict(chkpt['model'], strict=False)
except KeyError as e:
s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
"See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
raise KeyError(s) from e
if opt.resume:
# load optimizer
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
best_fitness = chkpt['best_fitness']
# load results
if chkpt.get('training_results') is not None:
with open(results_file, 'w') as file:
file.write(chkpt['training_results']) # write results.txt
start_epoch = chkpt['epoch'] + 1
del chkpt
# Mixed precision training https://github.com/NVIDIA/apex
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.95 + 0.05 # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
scheduler.last_epoch = start_epoch - 1 # see link below
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
# Plot lr schedule
# y = []
# for _ in range(epochs):
# scheduler.step()
# y.append(optimizer.param_groups[0]['lr'])
# plt.plot(y, '.-', label='LambdaLR')
# plt.xlabel('epoch')
# plt.ylabel('LR')
# plt.tight_layout()
# plt.savefig('LR.png', dpi=300)
# Initialize distributed training
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
dist.init_process_group(backend='nccl', # 'distributed backend'
init_method='tcp://127.0.0.1:9999', # distributed training init method
world_size=1, # number of nodes for distributed training
rank=0) # distributed training node rank
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
model.yolo_layers = model.module.yolo_layers # move yolo layer indices to top level
# Dataset
dataset = LoadImagesAndLabels(train_path, img_size, batch_size,
augment=True,
hyp=hyp, # augmentation hyperparameters
rect=opt.rect, # rectangular training
cache_images=opt.cache_images,
single_cls=opt.single_cls,
point_number=hyp['point_num'],
flip_idx_pair=hyp['flip_idx_pair']
)
# Dataloader
batch_size = min(batch_size, len(dataset))
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
num_workers=nw,
shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
pin_memory=True,
collate_fn=dataset.collate_fn)
# Testloader
# Model parameters
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
# Model EMA
ema = torch_utils.ModelEMA(model)
# Start training
nb = len(dataloader) # number of batches
n_burn = max(3 * nb, 500) # burn-in iterations, max(3 epochs, 500 iterations)
# torch.autograd.set_detect_anomaly(True)
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
t0 = time.time()
print('Image sizes %g - %g train, %g test' % (imgsz_min, imgsz_max, imgsz_test))
print('Using %g dataloader workers' % nw)
print('Starting training for %g epochs...' % epochs)
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()
mloss = torch.zeros(5).to(device) # mean losses
print(('\n' + '%10s' * 10) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls','land' , 'total', 'targets', 'img_size','lr'))
pbar = tqdm(enumerate(dataloader), total=nb , ncols = 50) # progress bar
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device).float() / 255.0
targets = targets.to(device)
# Burn-in
if ni <= n_burn:
xi = [0, n_burn] # x interp
model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
accumulate = max(1, np.interp(ni, xi, [1, 64 / batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
x['weight_decay'] = np.interp(ni, xi, [0.0, hyp['weight_decay'] if j == 1 else 0.0])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
# Multi-Scale
if opt.multi_scale:
if ni / accumulate % 1 == 0: # adjust img_size (67% - 150%) every 1 batch
img_size = random.randrange(grid_min, grid_max + 1) * gs
sf = img_size / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to 32-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Forward
pred = model(imgs)
#deBug
# img = imgs[0].cpu().numpy()
# img = np.swapaxes(img,0,2)
# img = np.swapaxes(img,0,1)
# img *= 255
#
# labels = targets.cpu().numpy()
# # print(labels)
# labels = labels[labels[:,0] == 0 ]
# # print("\n",labels)
# #
# img = np.ascontiguousarray(img)
# img_h,img_w,_ = img.shape
#
# for label in labels:
# label = label[1:]
# cx,cy,w,h = label[1:5]
# x1,y1,x2,y2 = cx - w/2,cy-h/2,cx+w/2,cy+h/2
# box = [int(x1*img_w),int(y1*img_h),int(x2*img_w),int(y2*img_h)]
#
# cv2.rectangle(img,(box[0],box[1]),(box[2],box[3]),(0,255,0))
# for i in range(hyp["point_num"]):
# cv2.circle(img, (int(label[5+i*2]*img_w), int(label[5+i*2+1]*img_h)), 1, (0, 0, 255), 4)
#
# cv2.imwrite("debug_imgs/{}.jpg".format(ni), img)
# Loss
loss, loss_items = compute_loss(pred, targets, model,point_number=hyp['point_num'])
if not torch.isfinite(loss):
print('WARNING: non-finite loss, ending training ', loss_items)
return results
# Backward
loss *= batch_size / 64 # scale loss
loss.backward()
# Optimize
if ni % accumulate == 0:
optimizer.step()
optimizer.zero_grad()
ema.update(model)
# Print
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.3g' * 7 + "%10.5g") % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, len(targets), img_size,scheduler.get_lr()[0])
pbar.set_description(s)
# end batch ------------------------------------------------------------------------------------------------
# Update scheduler
scheduler.step()
# Process epoch results
ema.update_attr(model)
final_epoch = epoch + 1 == epochs
# Tensorboard
if tb_writer:
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
'train/land_loss', ]
for x, tag in zip(list(mloss[:-1]) , tags):
tb_writer.add_scalar(tag, x, epoch)
chkpt = {'epoch': epoch,
'best_fitness': best_fitness,
'model': ema.ema.module.state_dict() if hasattr(model, 'module') else ema.ema.state_dict(),
'optimizer': None if final_epoch else optimizer.state_dict()}
# Save last, best and delete
torch.save(chkpt, "{}/{}_last.pt".format(wdir,opt.net))
if final_epoch:
torch.save(chkpt, "{}/{}_final.pt".format(wdir,opt.net))
del chkpt
# end epoch ----------------------------------------------------------------------------------------------------
# end training
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=250) # 500200 batches at bs 16, 117263 COCO images = 273 epochs
parser.add_argument('--batch-size', type=int, default=16) # effective bs = batch_size * accumulate = 16 * 4 = 64
parser.add_argument('--net', type=str, default='mbv3_large_1', help='net')
parser.add_argument('--train_path', type=str, default='/mnt/data1/yanghuiyu/project/object_detect/yolov4/my_data/wider_landmark_yolo_train.txt', help='*.txt path')
# parser.add_argument('--train_path', type=str, default='./data/wider_landmark98_yolo_train.txt', help='*.txt path')
parser.add_argument('--multi-scale', action='store_true', help='adjust (67%% - 150%%) img_size every 10 batches')
parser.add_argument('--img-size', nargs='+', type=int, default=[320, 640], help='[min_train, max-train, test]')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--weights', type=str, default='', help='initial weights path')
parser.add_argument('--backbone_weights', type=str, default='./pretrained/mobilenetv3-large-1cd25616.pth', help='initial backbone_weights path')
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--device', default='0', help='device id (i.e. 0 or 0,1 or cpu)')
parser.add_argument('--adam', action='store_true', help='use adam optimizer')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
opt = parser.parse_args()
last = wdir + '/{}_last.pt'.format(opt.net)
opt.weights = last if opt.resume else opt.weights
check_git_status()
print(opt)
opt.img_size.extend([opt.img_size[-1]] * (3 - len(opt.img_size))) # extend to 3 sizes (min, max, test)
device = torch_utils.select_device(opt.device, batch_size=opt.batch_size)
if device.type == 'cpu':
mixed_precision = False
# scale hyp['obj'] by img_size (evolved at 320)
# hyp['obj'] *= opt.img_size[0] / 320.
tb_writer = None
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
tb_writer = SummaryWriter(comment=opt.name)
train(hyp) # train normally