-
Notifications
You must be signed in to change notification settings - Fork 509
/
shelfnet.py
executable file
·687 lines (523 loc) · 24.6 KB
/
shelfnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
"""
Shelfnet
paper: https://arxiv.org/abs/1811.11254
based on: https://github.com/juntang-zhuang/ShelfNet
"""
from typing import Callable, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from super_gradients.training.models.sg_module import SgModule
from super_gradients.training.utils import HpmStruct
from super_gradients.common.registry.registry import register_model
from super_gradients.common.object_names import Models
from super_gradients.training.models.classification_models.resnet import BasicResNetBlock, ResNet, Bottleneck
class FCNHead(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
inter_channels = in_channels // 4
self.fcn = nn.Sequential(
nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(inter_channels),
nn.ReLU(),
nn.Dropout2d(0.1, False),
nn.Conv2d(inter_channels, out_channels, 1),
)
def forward(self, x):
return self.fcn(x)
class ShelfBlock(nn.Module):
def __init__(self, in_planes: int, planes: int, stride: int = 1, dropout: float = 0.25):
"""
S-Block implementation from the ShelfNet paper
:param in_planes: input planes
:param planes: output planes
:param stride: convolution stride
:param dropout: dropout percentage
"""
super().__init__()
if in_planes != planes:
self.conv0 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=1, padding=1, bias=True)
self.relu0 = nn.ReLU(inplace=True)
self.in_planes = in_planes
self.planes = planes
self.conv1 = nn.Conv2d(self.planes, self.planes, kernel_size=3, stride=stride, padding=1, bias=True)
self.bn1 = nn.BatchNorm2d(self.planes)
self.relu1 = nn.ReLU(inplace=True)
self.dropout = nn.Dropout2d(p=dropout)
self.bn2 = nn.BatchNorm2d(self.planes)
self.relu2 = nn.ReLU(inplace=True)
def forward(self, x):
if self.in_planes != self.planes:
x = self.conv0(x)
x = self.relu0(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.dropout(out)
out = self.conv1(out)
out = self.bn2(out)
out = out + x
return self.relu2(out)
class ShelfResNetBackBone(ResNet):
"""
ShelfResNetBackBone - A class that Inherits from the original ResNet class and manipulates the forward pass,
to create a backbone for the ShelfNet architecture
"""
def __init__(self, block, num_blocks, num_classes=10, width_mult=1):
super().__init__(block=block, num_blocks=num_blocks, num_classes=num_classes, width_mult=width_mult, backbone_mode=True)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.maxpool(out)
feat4 = self.layer1(out) # 1/4
feat8 = self.layer2(feat4) # 1/8
feat16 = self.layer3(feat8) # 1/16
feat32 = self.layer4(feat16) # 1/32
return feat4, feat8, feat16, feat32
class ShelfResNetBackBone18(ShelfResNetBackBone):
def __init__(self, num_classes: int):
super().__init__(BasicResNetBlock, [2, 2, 2, 2], num_classes=num_classes)
class ShelfResNetBackBone34(ShelfResNetBackBone):
def __init__(self, num_classes: int):
super().__init__(BasicResNetBlock, [3, 4, 6, 3], num_classes=num_classes)
class ShelfResNetBackBone503343(ShelfResNetBackBone):
def __init__(self, num_classes: int):
super().__init__(Bottleneck, [3, 3, 4, 3], num_classes=num_classes)
class ShelfResNetBackBone50(ShelfResNetBackBone):
def __init__(self, num_classes: int):
super().__init__(Bottleneck, [3, 4, 6, 3], num_classes=num_classes)
class ShelfResNetBackBone101(ShelfResNetBackBone):
def __init__(self, num_classes: int):
super().__init__(Bottleneck, [3, 4, 23, 3], num_classes=num_classes)
class ShelfNetModuleBase(SgModule):
"""
ShelfNetModuleBase - Base class for the different Modules of the ShelfNet Architecture
"""
def __init__(self):
super().__init__()
def forward(self, x):
raise NotImplementedError
def get_params(self):
wd_params, nowd_params = [], []
for name, module in self.named_modules():
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
wd_params.append(module.weight)
if module.bias is not None:
nowd_params.append(module.bias)
elif isinstance(module, nn.BatchNorm2d):
nowd_params += list(module.parameters())
return wd_params, nowd_params
class ConvBNReLU(ShelfNetModuleBase):
def __init__(self, in_chan: int, out_chan: int, ks: int = 3, stride: int = 1, padding: int = 1):
super(ConvBNReLU, self).__init__()
self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False)
self.bn = nn.BatchNorm2d(out_chan)
self.init_weight()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = F.relu(x)
return x
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if ly.bias is not None:
nn.init.constant_(ly.bias, 0)
class DecoderBase(ShelfNetModuleBase):
def __init__(self, planes: int, layers: int, kernel: int = 3, block=ShelfBlock):
super().__init__()
self.planes = planes
self.layers = layers
self.kernel = kernel
self.padding = int((kernel - 1) / 2)
self.inconv = block(planes, planes)
# CREATE MODULE FOR BOTTOM BLOCK
self.bottom = block(planes * (2 ** (layers - 1)), planes * (2 ** (layers - 1)))
# CREATE MODULE LIST FOR UP BRANCH
self.up_conv_list = nn.ModuleList()
self.up_dense_list = nn.ModuleList()
def forward(self, x):
raise NotImplementedError
class DecoderHW(DecoderBase):
"""
DecoderHW - The Decoder for the Heavy-Weight ShelfNet Architecture
"""
def __init__(self, planes, layers, block=ShelfBlock, *args, **kwargs):
super().__init__(planes=planes, layers=layers, block=block, *args, **kwargs)
for i in range(0, layers - 1):
self.up_conv_list.append(
nn.ConvTranspose2d(
planes * 2 ** (layers - 1 - i), planes * 2 ** max(0, layers - i - 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=True
)
)
self.up_dense_list.append(block(planes * 2 ** max(0, layers - i - 2), planes * 2 ** max(0, layers - i - 2)))
def forward(self, x):
# BOTTOM BRANCH
out = self.bottom(x[-1])
bottom = out
# UP BRANCH
up_out = []
up_out.append(bottom)
for j in range(0, self.layers - 1):
out = self.up_conv_list[j](out) + x[self.layers - j - 2]
out = self.up_dense_list[j](out)
up_out.append(out)
return up_out
class DecoderLW(DecoderBase):
"""
DecoderLW - The Decoder for the Light-Weight ShelfNet Architecture
"""
def __init__(self, planes, layers, block=ShelfBlock, *args, **kwargs):
super().__init__(planes=planes, layers=layers, block=block, *args, **kwargs)
for i in range(0, layers - 1):
self.up_conv_list.append(AttentionRefinementModule(planes * 2 ** (layers - 1 - i), planes * 2 ** max(0, layers - i - 2)))
self.up_dense_list.append(ConvBNReLU(in_chan=planes * 2 ** max(0, layers - i - 2), out_chan=planes * 2 ** max(0, layers - i - 2), ks=3, stride=1))
def forward(self, x):
# BOTTOM BRANCH
out = self.bottom(x[-1])
bottom = out
# UP BRANCH
up_out = []
up_out.append(bottom)
for j in range(0, self.layers - 1):
out = self.up_conv_list[j](out)
out_interpolate = F.interpolate(out, (out.size(2) * 2, out.size(3) * 2), mode="nearest")
out = out_interpolate + x[self.layers - j - 2]
out = self.up_dense_list[j](out)
up_out.append(out)
return up_out
class AttentionRefinementModule(nn.Module):
def __init__(self, in_chan, out_chan):
super().__init__()
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False)
self.bn_atten = nn.BatchNorm2d(out_chan)
self.sigmoid_atten = nn.Sigmoid()
self.init_weight()
def forward(self, x):
feat = self.conv(x)
atten = F.avg_pool2d(feat, feat.size()[2:])
atten = self.conv_atten(atten)
atten = self.bn_atten(atten)
atten = self.sigmoid_atten(atten)
out = torch.mul(feat, atten)
return out
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if ly.bias is not None:
nn.init.constant_(ly.bias, 0)
class LadderBlockBase(ShelfNetModuleBase):
def __init__(self, planes: int, layers: int, kernel: int = 3, block=ShelfBlock):
super().__init__()
self.planes = planes
self.layers = layers
self.kernel = kernel
self.padding = int((kernel - 1) / 2)
self.inconv = block(planes, planes)
# CREATE MODULE LIST FOR DOWN BRANCH
self.down_module_list = nn.ModuleList()
for i in range(0, layers - 1):
self.down_module_list.append(block(planes * (2**i), planes * (2**i)))
# USE STRIDED CONV INSTEAD OF POOLING
self.down_conv_list = nn.ModuleList()
for i in range(0, layers - 1):
self.down_conv_list.append(nn.Conv2d(planes * 2**i, planes * 2 ** (i + 1), stride=2, kernel_size=kernel, padding=self.padding))
# CREATE MODULE FOR BOTTOM BLOCK
self.bottom = block(planes * (2 ** (layers - 1)), planes * (2 ** (layers - 1)))
# CREATE MODULE LIST FOR UP BRANCH
self.up_conv_list = nn.ModuleList()
self.up_dense_list = nn.ModuleList()
def forward(self, x):
raise NotImplementedError
class LadderBlockHW(LadderBlockBase):
"""
LadderBlockHW - LadderBlock for the Heavy-Weight ShelfNet Architecture
"""
def __init__(self, planes, layers, block=ShelfBlock, *args, **kwargs):
super().__init__(planes=planes, layers=layers, block=block, *args, **kwargs)
for i in range(0, layers - 1):
self.up_conv_list.append(
nn.ConvTranspose2d(
planes * 2 ** (layers - i - 1), planes * 2 ** max(0, layers - i - 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=True
)
)
self.up_dense_list.append(block(planes * 2 ** max(0, layers - i - 2), planes * 2 ** max(0, layers - i - 2)))
def forward(self, x):
out = self.inconv(x[-1])
down_out = []
# down branch
for i in range(0, self.layers - 1):
out = out + x[-i - 1]
out = self.down_module_list[i](out)
down_out.append(out)
out = self.down_conv_list[i](out)
out = F.relu(out)
# bottom branch
out = self.bottom(out)
bottom = out
# up branch
up_out = []
up_out.append(bottom)
for j in range(0, self.layers - 1):
out = self.up_conv_list[j](out) + down_out[self.layers - j - 2]
out = self.up_dense_list[j](out)
up_out.append(out)
return up_out
class LadderBlockLW(LadderBlockBase):
"""
LadderBlockLW - LadderBlock for the Light-Weight ShelfNet Architecture
"""
def __init__(self, planes, layers, block=ShelfBlock, *args, **kwargs):
super().__init__(planes=planes, layers=layers, block=block, *args, **kwargs)
for i in range(0, layers - 1):
self.up_conv_list.append(AttentionRefinementModule(planes * 2 ** (layers - 1 - i), planes * 2 ** max(0, layers - i - 2)))
self.up_dense_list.append(ConvBNReLU(in_chan=planes * 2 ** max(0, layers - i - 2), out_chan=planes * 2 ** max(0, layers - i - 2), ks=3, stride=1))
def forward(self, x):
out = self.inconv(x[-1])
down_out = []
# DOWN BRANCH
for i in range(0, self.layers - 1):
out = out + x[-i - 1]
out = self.down_module_list[i](out)
down_out.append(out)
out = self.down_conv_list[i](out)
out = F.relu(out)
# BOTTOM BRANCH
out = self.bottom(out)
bottom = out
# UP BRANCH
up_out = []
up_out.append(bottom)
for j in range(0, self.layers - 1):
out = self.up_conv_list[j](out)
out = F.interpolate(out, (out.size(2) * 2, out.size(3) * 2), mode="nearest") + down_out[self.layers - j - 2]
out = self.up_dense_list[j](out)
up_out.append(out)
return up_out
class NetOutput(ShelfNetModuleBase):
def __init__(self, in_chan: int, mid_chan: int, num_classes: int):
super(NetOutput, self).__init__()
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
self.conv_out = nn.Conv2d(mid_chan, num_classes, kernel_size=3, bias=False, padding=1)
self.init_weight()
def forward(self, x):
x = self.conv(x)
x = self.conv_out(x)
return x
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if ly.bias is not None:
nn.init.constant_(ly.bias, 0)
class ShelfNetBase(ShelfNetModuleBase):
"""
ShelfNetBase - ShelfNet Base Generic Architecture
"""
def __init__(
self,
backbone: ShelfResNetBackBone,
planes: int,
layers: int,
num_classes: int = 21,
image_size: int = 512,
net_output_mid_channels_num: int = 64,
arch_params: HpmStruct = None,
):
self.num_classes = arch_params.num_classes if (arch_params and hasattr(arch_params, "num_classes")) else num_classes
self.image_size = arch_params.image_size if (arch_params and hasattr(arch_params, "image_size")) else image_size
super().__init__()
self.net_output_mid_channels_num = net_output_mid_channels_num
self.backbone = backbone(self.num_classes)
self.layers = layers
self.planes = planes
# INITIALIZE WITH AUXILARY HEAD OUTPUTS ONN -> TURN IT OFF TO RUN A FORWARD PASS WITHOUT THE AUXILARY HEADS
self.auxilary_head_outputs = True
# DECODER AND LADDER SHOULD BE IMPLEMENTED BY THE INHERITING CLASS
self.decoder = None
self.ladder = None
# BUILD THE CONV_OUT LIST BASED ON THE AMOUNT OF LAYERS IN THE SHELFNET
self.conv_out_list = torch.nn.ModuleList()
def forward(self, x):
raise NotImplementedError
def update_param_groups(self, param_groups: list, lr: float, epoch: int, iter: int, training_params: HpmStruct, total_batch: int) -> list:
"""
update_optimizer_for_param_groups - Updates the specific parameters with different LR
"""
# LEARNING RATE FOR THE BACKBONE IS lr
param_groups[0]["lr"] = lr
for i in range(1, len(param_groups)):
# LEARNING RATE FOR OTHER SHELFNET PARAMS IS lr * 10
param_groups[i]["lr"] = lr * 10
return param_groups
def replace_input_channels(self, in_channels: int, compute_new_weights_fn: Optional[Callable[[nn.Module, int], nn.Module]] = None):
self.backbone.replace_input_channels(in_channels=in_channels, compute_new_weights_fn=compute_new_weights_fn)
def get_input_channels(self) -> int:
return self.backbone.get_input_channels()
class ShelfNetHW(ShelfNetBase):
"""
ShelfNetHW - Heavy-Weight Version of ShelfNet
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.ladder = LadderBlockHW(planes=self.net_output_mid_channels_num, layers=self.layers)
self.decoder = DecoderHW(planes=self.net_output_mid_channels_num, layers=self.layers)
self.se_layer = nn.Linear(self.net_output_mid_channels_num * 2**3, self.num_classes)
self.aux_head = FCNHead(1024, self.num_classes)
self.final = nn.Conv2d(self.net_output_mid_channels_num, self.num_classes, 1)
# THE MID CHANNELS NUMBER OF THE NET OUTPUT BLOCK
net_out_planes = self.planes
mid_channels_num = self.net_output_mid_channels_num
# INITIALIZE THE conv_out_list
for i in range(self.layers):
self.conv_out_list.append(ConvBNReLU(in_chan=net_out_planes, out_chan=mid_channels_num, ks=1, padding=0))
mid_channels_num *= 2
net_out_planes *= 2
def forward(self, x):
image_size = x.size()[2:]
backbone_features_list = list(self.backbone(x))
conv_bn_relu_results_list = []
for feature, conv_bn_relu in zip(backbone_features_list, self.conv_out_list):
out = conv_bn_relu(feature)
conv_bn_relu_results_list.append(out)
decoder_out_list = self.decoder(conv_bn_relu_results_list)
ladder_out_list = self.ladder(decoder_out_list)
preds = [self.final(ladder_out_list[-1])]
# SE_LOSS ENCODING
enc = F.max_pool2d(ladder_out_list[0], kernel_size=ladder_out_list[0].size()[2:])
enc = torch.squeeze(enc, -1)
enc = torch.squeeze(enc, -1)
se = self.se_layer(enc)
preds.append(se)
# UP SAMPLING THE TOP LAYER FOR PREDICTION
preds[0] = F.interpolate(preds[0], image_size, mode="bilinear", align_corners=True)
# AUXILARY HEAD OUTPUT (ONLY RELEVANT FOR LOSS CALCULATION) - USE self.auxilary_head_outputs=FALSE FOR INFERENCE
if self.auxilary_head_outputs or self.training:
aux_out = self.aux_head(backbone_features_list[2])
aux_out = F.interpolate(aux_out, image_size, mode="bilinear", align_corners=True)
preds.append(aux_out)
return tuple(preds)
else:
return preds[0]
def initialize_param_groups(self, lr: float, training_params: HpmStruct) -> list:
"""
initialize_optimizer_for_model_param_groups - Initializes the weights of the optimizer
Initializes the Backbone, the Output and the Auxilary Head
differently
:param optimizer_cls: The nn.optim (optimizer class) to initialize
:param lr: lr to set for the optimizer
:param training_params:
:return: list of dictionaries with named params and optimizer attributes
"""
# OPTIMIZER PARAMETER GROUPS
params_list = []
# OPTIMIZE BACKBONE USING DIFFERENT LR
params_list.append({"named_params": self.backbone.named_parameters(), "lr": lr})
# OPTIMIZE MAIN SHELFNET ARCHITECTURE LAYERS
params_list.append(
{
"named_params": list(self.ladder.named_parameters())
+ list(self.decoder.named_parameters())
+ list(self.se_layer.named_parameters())
+ list(self.conv_out_list.named_parameters())
+ list(self.final.named_parameters())
+ list(self.aux_head.named_parameters()),
"lr": lr * 10,
}
)
return params_list
class ShelfNetLW(ShelfNetBase):
"""
ShelfNetLW - Light-Weight Implementation for ShelfNet
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.net_output_list = nn.ModuleList()
self.ladder = LadderBlockLW(planes=self.planes, layers=self.layers)
self.decoder = DecoderLW(planes=self.planes, layers=self.layers)
def forward(self, x):
H, W = x.size()[2:]
# SHELFNET LW ARCHITECTURE USES ONLY LAST 3 PARTIAL OUTPUTs OF THE BACKBONE'S 4 OUTPUT LAYERS
backbone_features_tuple = self.backbone(x)[1:]
if isinstance(self, ShelfNet18_LW):
# FOR SHELFNET18 USE 1x1 CONVS AFTER THE BACKBONE'S FORWARD PASS TO MANIPULATE THE CHANNELS FOR THE DECODER
conv_bn_relu_results_list = []
for feature, conv_bn_relu in zip(backbone_features_tuple, self.conv_out_list):
out = conv_bn_relu(feature)
conv_bn_relu_results_list.append(out)
else:
# FOR SHELFNET34 THE CHANNELS ARE ALREADY ALIGNED
conv_bn_relu_results_list = list(backbone_features_tuple)
decoder_out_list = self.decoder(conv_bn_relu_results_list)
ladder_out_list = self.ladder(decoder_out_list)
# GET THE LAST ELEMENTS OF THE LADDER_BLOCK BASED ON THE AMOUNT OF SHELVES IN THE ARCHITECTURE AND REVERSE LIST
feat_cp_list = list(reversed(ladder_out_list[(-1 * self.layers) :]))
feat_out = self.net_output_list[0](feat_cp_list[0])
feat_out = F.interpolate(feat_out, (H, W), mode="bilinear", align_corners=True)
if self.auxilary_head_outputs or self.training:
features_out_list = [feat_out]
for conv_output_layer, feat_cp in zip(self.net_output_list[1:], feat_cp_list[1:]):
feat_out_res = conv_output_layer(feat_cp)
feat_out_res = F.interpolate(feat_out_res, (H, W), mode="bilinear", align_corners=True)
features_out_list.append(feat_out_res)
return tuple(features_out_list)
else:
# THIS DOES NOT CALCULATE THE AUXILARY HEADS THAT ARE CRITICAL FOR THE LOSS (USED MAINLY FOR INFERENCE)
return feat_out
def initialize_param_groups(self, lr: float, training_params: HpmStruct) -> list:
"""
initialize_optimizer_for_model_param_groups - Initializes the optimizer group params, with 10x learning rate
for all but the backbone
:param lr: lr to set for the backbone
:param training_params:
:return: list of dictionaries with named params and optimizer attributes
"""
# OPTIMIZER PARAMETER GROUPS
params_list = []
# OPTIMIZE BACKBONE USING DIFFERENT LR
params_list.append({"named_params": self.backbone.named_parameters(), "lr": lr})
# OPTIMIZE MAIN SHELFNET ARCHITECTURE LAYERS
params_list.append(
{
"named_params": list(self.ladder.named_parameters()) + list(self.decoder.named_parameters()) + list(self.conv_out_list.named_parameters()),
"lr": lr * 10,
}
)
return params_list
@register_model(Models.SHELFNET18_LW)
class ShelfNet18_LW(ShelfNetLW):
def __init__(self, *args, **kwargs):
super().__init__(backbone=ShelfResNetBackBone18, planes=64, layers=3, *args, **kwargs)
# INITIALIZE THE net_output_list AND THE conv_out LIST
out_planes = self.planes
for i in range(self.layers):
# THE MID CHANNELS NUMBER OF THE NET OUTPUT BLOCK
mid_channels_num = self.planes if i == 0 else self.net_output_mid_channels_num
self.net_output_list.append(NetOutput(out_planes, mid_channels_num, self.num_classes))
self.conv_out_list.append(ConvBNReLU(out_planes * 2, out_planes, ks=1, stride=1, padding=0))
out_planes *= 2
@register_model(Models.SHELFNET34_LW)
class ShelfNet34_LW(ShelfNetLW):
def __init__(self, *args, **kwargs):
super().__init__(backbone=ShelfResNetBackBone34, planes=128, layers=3, *args, **kwargs)
# INITIALIZE THE net_output_list
net_out_planes = self.planes
for i in range(self.layers):
# IF IT'S THE FIRST LAYER THAN THE MID-CHANNELS NUM IS ACTUALLY self.planes
mid_channels_num = self.planes if i == 0 else self.net_output_mid_channels_num
self.net_output_list.append(NetOutput(net_out_planes, mid_channels_num, self.num_classes))
net_out_planes *= 2
@register_model(Models.SHELFNET50_3343)
class ShelfNet503343(ShelfNetHW):
def __init__(self, *args, **kwargs):
super().__init__(backbone=ShelfResNetBackBone503343, planes=256, layers=4, *args, **kwargs)
@register_model(Models.SHELFNET50)
class ShelfNet50(ShelfNetHW):
def __init__(self, *args, **kwargs):
super().__init__(backbone=ShelfResNetBackBone50, planes=256, layers=4, *args, **kwargs)
@register_model(Models.SHELFNET101)
class ShelfNet101(ShelfNetHW):
def __init__(self, *args, **kwargs):
super().__init__(backbone=ShelfResNetBackBone101, planes=256, layers=4, *args, **kwargs)