English | 简体中文
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeployEnvironment Requirements
-
- Install FastDeploy Python whl package. Refer to FastDeploy Python Installation
This directory provides examples that infer.py
fast finishes the deployment of YOLOv6 on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/yolov6/python/
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov6s_infer.tar
tar -xf yolov6s_infer.tar
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU inference
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device cpu
# GPU inference
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device gpu
# KunlunXin XPU inference
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device kunlunxin
# Huawei Ascend Inference
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device ascend
If you want to verify the inference of ONNX models, refer to the following command:
# Download YOLOv6 model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov6s.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU inference
python infer.py --model yolov6s.onnx --image 000000014439.jpg --device cpu
# GPU inference
python infer.py --model yolov6s.onnx --image 000000014439.jpg --device gpu
# TensorRT inference on GPU
python infer.py --model yolov6s.onnx --image 000000014439.jpg --device gpu --use_trt True
The visualized result after running is as follows
fastdeploy.vision.detection.YOLOv6(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
YOLOv6 model loading and initialization, among which model_file is the exported ONNX model format
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path. No need to set when the model is in ONNX format
- runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
- model_format(ModelFormat): Model format. ONNX format by default
YOLOv6.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)Model prediction interface. Input images and output detection results.
Parameter
- image_data(np.ndarray): Input data in HWC or BGR format
- conf_threshold(float): Filtering threshold of detection box confidence
- nms_iou_threshold(float): iou threshold during NMS processing
Return
Return
fastdeploy.vision.DetectionResult
structure. Refer to Vision Model Prediction Results for its description.
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
- size(list[int]): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [640, 640]
- padding_value(list[float]): This parameter is used to change the padding value of images during resize, containing three floating-point elements that represent the value of three channels. Default value [114, 114, 114]
- is_no_pad(bool): Specify whether to resize the image through padding.
is_no_pad=True
represents no paddling. Defaultis_no_pad=False
- is_mini_pad(bool): This parameter sets the width and height of the image after resize to the value nearest to the
size
member variable and to the point where the padded pixel size is divisible by thestride
member variable. Defaultis_mini_pad=False
- stride(int): Used with the
is_mini_padide
member variable. Defaultstride=32