You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
By using history embeddings on CPU to store updated node-embeddings from prior training iterations, and pulling neighboring node-embeddings in history embeddings to participate in training, we can have smaller GPU memory consumption.
@inproceedings{Fey/etal/2021,
title={{GNNAutoScale}: Scalable and Expressive Graph Neural Networks via Historical Embeddings},
author={Fey, M. and Lenssen, J. E. and Weichert, F. and Leskovec, J.},
booktitle={International Conference on Machine Learning (ICML)},
year={2021},
}
Github link: https://github.com/rusty1s/pyg_autoscale