-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_ST.py
116 lines (91 loc) · 5.49 KB
/
train_ST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""
Copyright (C) 2021 Adobe. All rights reserved.
"""
import time
import torch
from options.train_options import TrainOptions
from data import create_dataset_condition
from models import create_model
from util.visualizer import Visualizer
import os
import torch.utils.data as data
from util.utilNS import txt2list
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataroot', '-d', type=str, required=True, help='path to training data')
parser.add_argument('--name', '-n', type=str, required=True, help='name of the experiment')
parser.add_argument('--checkpoints_dir', '-c', type=str, default='./checkpoints')
args = parser.parse_args()
dataroot = args.dataroot
name = args.name
checkpoints_dir = args.checkpoints_dir
config_fn = os.path.join(dataroot, 'TRAIN_config_ST.txt')
if not os.path.isfile(config_fn):
config_fn = 'configs/TRAIN_config_ST.txt'
assert os.path.isfile(config_fn)
print('Using default configuration file for Stroke Texture training.')
config_suffix_list = ['--dataroot', dataroot, '--name', name, '--checkpoints_dir', checkpoints_dir]
opt = TrainOptions(cmd_line=(txt2list(config_fn) + config_suffix_list)).parse() # get training options
if not os.path.exists(opt.checkpoints_dir):
os.makedirs(opt.checkpoints_dir)
dataset = create_dataset_condition(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
the_dataloader = data.DataLoader(
dataset,
batch_size=opt.batch_size,
num_workers=4,
)
model = create_model(opt) # create a model given opt.model and other options
print('The number of training images = %d' % dataset_size)
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
opt.visualizer = visualizer
total_iters = 0 # the total number of training iterations
optimize_time = 0.1
times = []
# range(1, 8 + 8 + 1)
for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch
for i, data in enumerate(the_dataloader): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
batch_size = data["A"].size(0) # 16
total_iters += batch_size
epoch_iter += batch_size
if len(opt.gpu_ids) > 0:
torch.cuda.synchronize()
optimize_start_time = time.time()
if epoch == opt.epoch_count and i == 0:
model.data_dependent_initialize(data)
model.setup(opt) # regular setup: load and print networks; create schedulers
model.parallelize()
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if len(opt.gpu_ids) > 0:
torch.cuda.synchronize()
optimize_time = (time.time() - optimize_start_time) / batch_size * 0.005 + 0.995 * optimize_time
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
visualizer.print_current_losses(epoch, epoch_iter, losses, optimize_time, t_data)
if opt.display_id is None or opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
print(opt.name) # it's useful to occasionally show the experiment name on console
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))
model.update_learning_rate() # update learning rates at the end of every epoch.