-
Notifications
You must be signed in to change notification settings - Fork 46
/
utils.py
193 lines (161 loc) · 7.39 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# --------------------------------------------------------
# RepMLPNet: Hierarchical Vision MLP with Re-parameterized Locality (https://arxiv.org/abs/2112.11081)
# CVPR 2022
# Github source: https://github.com/DingXiaoH/RepMLP
# Licensed under The MIT License [see LICENSE for details]
# The training script is based on the code of Swin Transformer (https://github.com/microsoft/Swin-Transformer)
# --------------------------------------------------------
import os
import torch
import torch.distributed as dist
import numpy as np
try:
# noinspection PyUnresolvedReferences
from apex import amp
except ImportError:
amp = None
def unwrap_model(model):
"""Remove the DistributedDataParallel wrapper if present."""
wrapped = isinstance(model, torch.nn.parallel.distributed.DistributedDataParallel)
return model.module if wrapped else model
def load_checkpoint(config, model, optimizer, lr_scheduler, logger, model_ema=None):
logger.info(f"==============> Resuming form {config.MODEL.RESUME}....................")
if config.MODEL.RESUME.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
config.MODEL.RESUME, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
msg = model.load_state_dict(checkpoint['model'], strict=False)
logger.info(msg)
max_accuracy = 0.0
if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
config.defrost()
config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
config.freeze()
if 'amp' in checkpoint and config.AMP_OPT_LEVEL != "O0" and checkpoint['config'].AMP_OPT_LEVEL != "O0":
amp.load_state_dict(checkpoint['amp'])
logger.info(f"=> loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})")
if 'max_accuracy' in checkpoint:
max_accuracy = checkpoint['max_accuracy']
if model_ema is not None:
unwrap_model(model_ema).load_state_dict(checkpoint['ema'])
print('=================================================== EMAloaded')
del checkpoint
torch.cuda.empty_cache()
return max_accuracy
def load_weights(model, path):
checkpoint = torch.load(path, map_location='cpu')
if 'model' in checkpoint:
checkpoint = checkpoint['model']
unwrap_model(model).load_state_dict(checkpoint, strict=False)
print('=================== loaded from', path)
def save_latest(config, epoch, model, max_accuracy, optimizer, lr_scheduler, logger, model_ema=None):
save_state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'max_accuracy': max_accuracy,
'epoch': epoch,
'config': config}
if config.AMP_OPT_LEVEL != "O0":
save_state['amp'] = amp.state_dict()
if model_ema is not None:
save_state['ema'] = unwrap_model(model_ema).state_dict()
save_path = os.path.join(config.OUTPUT, 'latest.pth')
logger.info(f"{save_path} saving......")
torch.save(save_state, save_path)
logger.info(f"{save_path} saved !!!")
def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, logger, is_best=False, model_ema=None):
save_state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'max_accuracy': max_accuracy,
'epoch': epoch,
'config': config}
if config.AMP_OPT_LEVEL != "O0":
save_state['amp'] = amp.state_dict()
if model_ema is not None:
save_state['ema'] = unwrap_model(model_ema).state_dict()
if is_best:
best_path = os.path.join(config.OUTPUT, 'best_ckpt.pth')
torch.save(save_state, best_path)
save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth')
logger.info(f"{save_path} saving......")
torch.save(save_state, save_path)
logger.info(f"{save_path} saved !!!")
def get_grad_norm(parameters, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
total_norm = total_norm ** (1. / norm_type)
return total_norm
def auto_resume_helper(output_dir):
checkpoints = os.listdir(output_dir)
checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth') and 'ema' not in ckpt]
print(f"All checkpoints founded in {output_dir}: {checkpoints}")
if len(checkpoints) > 0:
latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime)
print(f"The latest checkpoint founded: {latest_checkpoint}")
resume_file = latest_checkpoint
else:
resume_file = None
return resume_file
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= dist.get_world_size()
return rt
def update_model_ema(cfg, num_gpus, model, model_ema, cur_epoch, cur_iter):
"""Update exponential moving average (ema) of model weights."""
update_period = cfg.TRAIN.EMA_UPDATE_PERIOD
if update_period is None or update_period == 0 or cur_iter % update_period != 0:
return
# Adjust alpha to be fairly independent of other parameters
total_batch_size = num_gpus * cfg.DATA.BATCH_SIZE
adjust = total_batch_size / cfg.TRAIN.EPOCHS * update_period
# print('ema adjust', adjust)
alpha = min(1.0, cfg.TRAIN.EMA_ALPHA * adjust)
# During warmup simply copy over weights instead of using ema
alpha = 1.0 if cur_epoch < cfg.TRAIN.WARMUP_EPOCHS else alpha
# Take ema of all parameters (not just named parameters)
params = unwrap_model(model).state_dict()
for name, param in unwrap_model(model_ema).state_dict().items():
param.copy_(param * (1.0 - alpha) + params[name] * alpha)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)